

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	kitchen 1.2.0a1 documentation

Kitchen, everything but the sink

	Author:	Toshio Kuratomi

	Date:	19 March 2011

	Version:	1.0.x

We’ve all done it. In the process of writing a brand new application we’ve
discovered that we need a little bit of code that we’ve invented before.
Perhaps it’s something to handle unicode text. Perhaps it’s something to make
a bit of python-2.5 code run on python-2.3. Whatever it is, it ends up being
a tiny bit of code that seems too small to worry about pushing into its own
module so it sits there, a part of your current project, waiting to be cut and
pasted into your next project. And the next. And the next. And since that
little bittybit of code proved so useful to you, it’s highly likely that it
proved useful to someone else as well. Useful enough that they’ve written it
and copy and pasted it over and over into each of their new projects.

Well, no longer! Kitchen aims to pull these small snippets of code into a few
python modules which you can import and use within your project. No more copy
and paste! Now you can let someone else maintain and release these small
snippets so that you can get on with your life.

This package forms the core of Kitchen. It contains some useful modules for
using newer python standard library [http://docs.python.org/library] modules on older python versions, text manipulation,
PEP 386 [http://www.python.org/dev/peps/pep-0386] versioning, and initializing gettext [http://docs.python.org/library/gettext.html#module-gettext]. With this package we’re
trying to provide a few useful features that don’t have too many dependencies
outside of the python standard library [http://docs.python.org/library]. We’ll be releasing other modules that drop into the
kitchen namespace to add other features (possibly with larger deps) as time
goes on.

Requirements

We’ve tried to keep the core kitchen module’s requirements lightweight. At the
moment kitchen only requires

	python:	2.3.1 or later

Warning

Kitchen-1.1.0 is likely to be the last release that supports
python-2.3.x. Future releases will target python-2.4 as the minimum
required version.

Soft Requirements

If found, these libraries will be used to make the implementation of some part
of kitchen better in some way. If they are not present, the API that they
enable will still exist but may function in a different manner.

	chardet [http://pypi.python.org/pypi/chardet]

	Used in guess_encoding() and
guess_encoding_to_xml() to help guess
encoding of byte strings being converted. If not present, unknown
encodings will be converted as if they were latin1

Other Recommended Libraries

These libraries implement commonly used functionality that everyone seems to
invent. Rather than reinvent their wheel, I simply list the things that they
do well for now. Perhaps if people can’t find them normally, I’ll add them as
requirements in setup.py or link them into kitchen’s namespace. For
now, I just mention them here:

	bunch [http://pypi.python.org/pypi/bunch/]

	Bunch is a dictionary that you can use attribute lookup as well as bracket
notation to access. Setting it apart from most homebrewed implementations
is the bunchify() function which will descend nested structures of
lists and dicts, transforming the dicts to Bunch’s.

	hashlib [http://code.krypto.org/python/hashlib/]

	Python 2.5 and forward have a hashlib [http://docs.python.org/library/hashlib.html#module-hashlib] library that provides secure
hash functions to python. If you’re developing for python2.3 or
python2.4, though, you can install the standalone hashlib library and have
access to the same functions.

	iterutils [http://pypi.python.org/pypi/iterutils/]

	The python documentation for itertools [http://docs.python.org/library/itertools.html#module-itertools] has some examples
of other nice iterable functions that can be built from the
itertools [http://docs.python.org/library/itertools.html#module-itertools] functions. This third-party module creates those recipes
as a module.

	ordereddict [http://pypi.python.org/pypi/ordereddict/]

	Python 2.7 and forward have a OrderedDict that
provides a dict [http://docs.python.org/library/stdtypes.html#dict] whose items are ordered (and indexable) as well
as named.

	unittest2 [http://pypi.python.org/pypi/unittest2]

	Python 2.7 has an updated unittest [http://docs.python.org/library/unittest.html#module-unittest] library with new functions not
present in the python standard library [http://docs.python.org/library] for Python 2.6 or less. If you want to use those
new functions but need your testing framework to be compatible with older
Python the unittest2 library provides the update as an external module.

	nose [http://somethingaboutorange.com/mrl/projects/nose/]

	If you want to use a test discovery tool instead of the unittest
framework, nosetests provides a simple to use way to do that.

License

This python module is distributed under the terms of the
GNU Lesser General Public License Version 2 or later [http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html].

Note

Some parts of this module are licensed under terms less restrictive
than the LGPLv2+. If you separate these files from the work as a whole
you are allowed to use them under the less restrictive licenses. The
following is a list of the files that are known:

	Python 2 license [http://www.python.org/download/releases/2.4/license/]

	_subprocess.py, test_subprocess.py,
defaultdict.py, test_defaultdict.py,
_base64.py, and test_base64.py

Contents

	Using kitchen to write good code
	Overcoming frustration: Correctly using unicode in python2

	Designing Unicode Aware APIs

	Kitchen API
	Kitchen.i18n Module

	Kitchen.text: unicode and utf8 and xml oh my!

	Kitchen.collections

	Kitchen.iterutils Module

	Helpers for versioning software

	Python 2.4 Compatibiity

	Python 2.5 Compatibility

	Python 2.7 Compatibility

	Exceptions

	1.0.0 Porting Guide
	python-fedora

	yum

	Conventions for contributing to kitchen
	Style

	Python 2.3 compatibility

	Unittests

	Docstrings and documentation

	Kitchen versioning

	I18N

	API updates

	NEWS file

	Kitchen subpackages

	Kitchen addon packages

	Glossary

Indices and tables

	Index

	Module Index

	Search Page

Project Pages

More information about the project can be found on the project webpage [https://fedorahosted.org/kitchen]

The latest published version of this documentation can be found on the documentation page [https://fedorahosted.org/releases/k/i/kitchen/docs]

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

Using kitchen to write good code

Kitchen’s functions won’t automatically make you a better programmer. You
have to learn when and how to use them as well. This section of the
documentation is intended to show you some of the ways that you can apply
kitchen’s functions to problems that may have arisen in your life. The goal
of this section is to give you enough information to understand what the
kitchen API can do for you and where in the Kitchen API docs to look
for something that can help you with your next issue. Along the way,
you might pick up the knack for identifying issues with your code before you
publish it. And that will make you a better coder.

	Overcoming frustration: Correctly using unicode in python2
	Frustration #1: Inconsistent Errors

	Frustration #2: Inconsistent APIs

	Frustration #3: Inconsistent treatment of output

	Frustrations #4 and #5 – The other shoes

	Frustration #6: Inconsistent APIs Part deux

	A few solutions

	Designing Unicode Aware APIs
	Take either bytes or unicode, output only unicode

	Take either bytes or unicode, output the same type

	Separate functions

	Deciding whether to take str or unicode when no value is returned

	APIs to Avoid

	Knowing your data

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Using kitchen to write good code

Overcoming frustration: Correctly using unicode in python2

In python-2.x, there’s two types that deal with text.

	str is for strings of bytes. These are very similar in nature to
how strings are handled in C.

	unicode is for strings of unicode code points.

Note

Just what the dickens is “Unicode”?

One mistake that people encountering this issue for the first time make is
confusing the unicode type and the encodings of unicode stored in
the str type. In python, the unicode type stores an
abstract sequence of code points. Each code point
represents a grapheme. By contrast, byte str stores
a sequence of bytes which can then be mapped to a sequence of code
points. Each unicode encoding (UTF-8, UTF-7, UTF-16, UTF-32,
etc) maps different sequences of bytes to the unicode code points.

What does that mean to you as a programmer? When you’re dealing with text
manipulations (finding the number of characters in a string or cutting
a string on word boundaries) you should be dealing with unicode
strings as they abstract characters in a manner that’s appropriate for
thinking of them as a sequence of letters that you will see on a page.
When dealing with I/O, reading to and from the disk, printing to
a terminal, sending something over a network link, etc, you should be dealing
with byte str as those devices are going to need to deal with
concrete implementations of what bytes represent your abstract characters.

In the python2 world many APIs use these two classes interchangably but there
are several important APIs where only one or the other will do the right
thing. When you give the wrong type of string to an API that wants the other
type, you may end up with an exception being raised (UnicodeDecodeError
or UnicodeEncodeError). However, these exceptions aren’t always raised
because python implicitly converts between types... sometimes.

Frustration #1: Inconsistent Errors

Although converting when possible seems like the right thing to do, it’s
actually the first source of frustration. A programmer can test out their
program with a string like: The quick brown fox jumped over the lazy dog
and not encounter any issues. But when they release their software into the
wild, someone enters the string: I sat down for coffee at the café and
suddenly an exception is thrown. The reason? The mechanism that converts
between the two types is only able to deal with ASCII characters.
Once you throw non-ASCII characters into your strings, you have to
start dealing with the conversion manually.

So, if I manually convert everything to either byte str or
unicode strings, will I be okay? The answer is.... sometimes.

Frustration #2: Inconsistent APIs

The problem you run into when converting everything to byte str or
unicode strings is that you’ll be using someone else’s API quite
often (this includes the APIs in the python standard library [http://docs.python.org/library]) and find that the API will only
accept byte str or only accept unicode strings. Or worse,
that the code will accept either when you’re dealing with strings that consist
solely of ASCII but throw an error when you give it a string that’s
got non-ASCII characters. When you encounter these APIs you first
need to identify which type will work better and then you have to convert your
values to the correct type for that code. Thus the programmer that wants to
proactively fix all unicode errors in their code needs to do two things:

	You must keep track of what type your sequences of text are. Does
my_sentence contain unicode or str? If you don’t
know that then you’re going to be in for a world of hurt.

	Anytime you call a function you need to evaluate whether that function will
do the right thing with str or unicode values. Sending
the wrong value here will lead to a UnicodeError being thrown when
the string contains non-ASCII characters.

Note

There is one mitigating factor here. The python community has been
standardizing on using unicode in all its APIs. Although there
are some APIs that you need to send byte str to in order to be
safe, (including things as ubiquitous as print() [http://docs.python.org/library/functions.html#print] as we’ll see in the
next section), it’s getting easier and easier to use unicode
strings with most APIs.

Frustration #3: Inconsistent treatment of output

Alright, since the python community is moving to using unicode
strings everywhere, we might as well convert everything to unicode
strings and use that by default, right? Sounds good most of the time but
there’s at least one huge caveat to be aware of. Anytime you output text to
the terminal or to a file, the text has to be converted into a byte
str. Python will try to implicitly convert from unicode to
byte str... but it will throw an exception if the bytes are
non-ASCII:

>>> string = unicode(raw_input(), 'utf8')
café
>>> log = open('/var/tmp/debug.log', 'w')
>>> log.write(string)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe9' in position 3: ordinal not in range(128)

Okay, this is simple enough to solve: Just convert to a byte str and
we’re all set:

>>> string = unicode(raw_input(), 'utf8')
café
>>> string_for_output = string.encode('utf8', 'replace')
>>> log = open('/var/tmp/debug.log', 'w')
>>> log.write(string_for_output)
>>>

So that was simple, right? Well... there’s one gotcha that makes things a bit
harder to debug sometimes. When you attempt to write non-ASCII
unicode strings to a file-like object you get a traceback everytime.
But what happens when you use print() [http://docs.python.org/library/functions.html#print]? The terminal is a file-like object
so it should raise an exception right? The answer to that is....
sometimes:

$ python
>>> print u'café'
café

No exception. Okay, we’re fine then?

We are until someone does one of the following:

	Runs the script in a different locale:

$ LC_ALL=C python
>>> # Note: if you're using a good terminal program when running in the C locale
>>> # The terminal program will prevent you from entering non-ASCII characters
>>> # python will still recognize them if you use the codepoint instead:
>>> print u'caf\xe9'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe9' in position 3: ordinal not in range(128)

	Redirects output to a file:

$ cat test.py
#!/usr/bin/python -tt
-*- coding: utf-8 -*-
print u'café'
$./test.py >t
Traceback (most recent call last):
 File "./test.py", line 4, in <module>
 print u'café'
UnicodeEncodeError: 'ascii' codec can't encode character u'\xe9' in position 3: ordinal not in range(128)

Okay, the locale thing is a pain but understandable: the C locale doesn’t
understand any characters outside of ASCII so naturally attempting to
display those won’t work. Now why does redirecting to a file cause problems?
It’s because print() [http://docs.python.org/library/functions.html#print] in python2 is treated specially. Whereas the other
file-like objects in python always convert to ASCII unless you set
them up differently, using print() [http://docs.python.org/library/functions.html#print] to output to the terminal will use
the user’s locale to convert before sending the output to the terminal. When
print() [http://docs.python.org/library/functions.html#print] is not outputting to the terminal (being redirected to a file,
for instance), print() [http://docs.python.org/library/functions.html#print] decides that it doesn’t know what locale to use
for that file and so it tries to convert to ASCII instead.

So what does this mean for you, as a programmer? Unless you have the luxury
of controlling how your users use your code, you should always, always, always
convert to a byte str before outputting strings to the terminal or to
a file. Python even provides you with a facility to do just this. If you
know that every unicode string you send to a particular file-like
object (for instance, stdout [http://docs.python.org/library/sys.html#sys.stdout]) should be converted to a particular
encoding you can use a codecs.StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] object to convert from
a unicode string into a byte str. In particular,
codecs.getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter] will return a StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] class
that will help you to wrap a file-like object for output. Using our
print() [http://docs.python.org/library/functions.html#print] example:

$ cat test.py
#!/usr/bin/python -tt
-*- coding: utf-8 -*-
import codecs
import sys

UTF8Writer = codecs.getwriter('utf8')
sys.stdout = UTF8Writer(sys.stdout)
print u'café'
$./test.py >t
$ cat t
café

Frustrations #4 and #5 – The other shoes

In English, there’s a saying “waiting for the other shoe to drop”. It means
that when one event (usually bad) happens, you come to expect another event
(usually worse) to come after. In this case we have two other shoes.

Frustration #4: Now it doesn’t take byte strings?!

If you wrap sys.stdout [http://docs.python.org/library/sys.html#sys.stdout] using codecs.getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter] and think you
are now safe to print any variable without checking its type I am afraid
I must inform you that you’re not paying enough attention to Murphy’s
Law. The StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] that codecs.getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter]
provides will take unicode strings and transform them into byte
str before they get to sys.stdout [http://docs.python.org/library/sys.html#sys.stdout]. The problem is if you
give it something that’s already a byte str it tries to transform
that as well. To do that it tries to turn the byte str you give it
into unicode and then transform that back into a byte str...
and since it uses the ASCII codec to perform those conversions,
chances are that it’ll blow up when making them:

>>> import codecs
>>> import sys
>>> UTF8Writer = codecs.getwriter('utf8')
>>> sys.stdout = UTF8Writer(sys.stdout)
>>> print 'café'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib64/python2.6/codecs.py", line 351, in write
 data, consumed = self.encode(object, self.errors)
UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 3: ordinal not in range(128)

To work around this, kitchen provides an alternate version of
codecs.getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter] that can deal with both byte str and
unicode strings. Use kitchen.text.converters.getwriter() in
place of the codecs [http://docs.python.org/library/codecs.html#module-codecs] version like this:

>>> import sys
>>> from kitchen.text.converters import getwriter
>>> UTF8Writer = getwriter('utf8')
>>> sys.stdout = UTF8Writer(sys.stdout)
>>> print u'café'
café
>>> print 'café'
café

Frustration #5: Exceptions

Okay, so we’ve gotten ourselves this far. We convert everything to
unicode strings. We’re aware that we need to convert back into byte
str before we write to the terminal. We’ve worked around the
inability of the standard getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter] to deal with both byte
str and unicode strings. Are we all set? Well, there’s at
least one more gotcha: raising exceptions with a unicode message.
Take a look:

>>> class MyException(Exception):
>>> pass
>>>
>>> raise MyException(u'Cannot do this')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.MyException: Cannot do this
>>> raise MyException(u'Cannot do this while at a café')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.MyException:
>>>

No, I didn’t truncate that last line; raising exceptions really cannot handle
non-ASCII characters in a unicode string and will output an
exception without the message if the message contains them. What happens if
we try to use the handy dandy getwriter() trick
to work around this?

>>> import sys
>>> from kitchen.text.converters import getwriter
>>> sys.stderr = getwriter('utf8')(sys.stderr)
>>> raise MyException(u'Cannot do this')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.MyException: Cannot do this
>>> raise MyException(u'Cannot do this while at a café')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.MyException>>>

Not only did this also fail, it even swallowed the trailing newline that’s
normally there.... So how to make this work? Transform from unicode
strings to byte str manually before outputting:

>>> from kitchen.text.converters import to_bytes
>>> raise MyException(to_bytes(u'Cannot do this while at a café'))
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.MyException: Cannot do this while at a café
>>>

Warning

If you use codecs.getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter] on sys.stderr [http://docs.python.org/library/sys.html#sys.stderr], you’ll find
that raising an exception with a byte str is broken by the
default StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] as well. Don’t do that or you’ll
have no way to output non-ASCII characters. If you want to use
a StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] to encode other things on stderr while
still having working exceptions, use
kitchen.text.converters.getwriter().

Frustration #6: Inconsistent APIs Part deux

Sometimes you do everything right in your code but other people’s code fails
you. With unicode issues this happens more often than we want. A glaring
example of this is when you get values back from a function that aren’t
consistently unicode string or byte str.

An example from the python standard library [http://docs.python.org/library] is gettext [http://docs.python.org/library/gettext.html#module-gettext]. The gettext [http://docs.python.org/library/gettext.html#module-gettext] functions
are used to help translate messages that you display to users in the users’
native languages. Since most languages contain letters outside of the
ASCII range, the values that are returned contain unicode characters.
gettext [http://docs.python.org/library/gettext.html#module-gettext] provides you with ugettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.ugettext] and
ungettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.ungettext] to return these translations as
unicode strings and gettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.gettext],
ngettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.ngettext],
lgettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.lgettext], and
lngettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.lngettext] to return them as encoded byte
str. Unfortunately, even though they’re documented to return only
one type of string or the other, the implementation has corner cases where the
wrong type can be returned.

This means that even if you separate your unicode string and byte
str correctly before you pass your strings to a gettext [http://docs.python.org/library/gettext.html#module-gettext]
function, afterwards, you might have to check that you have the right sort of
string type again.

Note

kitchen.i18n provides alternate gettext translation objects that
return only byte str or only unicode string.

A few solutions

Now that we’ve identified the issues, can we define a comprehensive strategy
for dealing with them?

Convert text at the border

If you get some piece of text from a library, read from a file, etc, turn it
into a unicode string immediately. Since python is moving in the
direction of unicode strings everywhere it’s going to be easier to
work with unicode strings within your code.

If your code is heavily involved with using things that are bytes, you can do
the opposite and convert all text into byte str at the border and
only convert to unicode when you need it for passing to another
library or performing string operations on it.

In either case, the important thing is to pick a default type for strings and
stick with it throughout your code. When you mix the types it becomes much
easier to operate on a string with a function that can only use the other type
by mistake.

Note

In python3, the abstract unicode type becomes much more prominent.
The type named str is the equivalent of python2’s unicode and
python3’s bytes type replaces python2’s str. Most APIs deal
in the unicode type of string with just some pieces that are low level
dealing with bytes. The implicit conversions between bytes and unicode
is removed and whenever you want to make the conversion you need to do so
explicitly.

When the data needs to be treated as bytes (or unicode) use a naming convention

Sometimes you’re converting nearly all of your data to unicode
strings but you have one or two values where you have to keep byte
str around. This is often the case when you need to use the value
verbatim with some external resource. For instance, filenames or key values
in a database. When you do this, use a naming convention for the data you’re
working with so you (and others reading your code later) don’t get confused
about what’s being stored in the value.

If you need both a textual string to present to the user and a byte value for
an exact match, consider keeping both versions around. You can either use two
variables for this or a dict [http://docs.python.org/library/stdtypes.html#dict] whose key is the byte value.

Note

You can use the naming convention used in kitchen as a guide for
implementing your own naming convention. It prefixes byte str
variables of unknown encoding with b_ and byte str of known
encoding with the encoding name like: utf8_. If the default was to
handle str and only keep a few unicode values, those
variables would be prefixed with u_.

When outputting data, convert back into bytes

When you go to send your data back outside of your program (to the filesystem,
over the network, displaying to the user, etc) turn the data back into a byte
str. How you do this will depend on the expected output format of
the data. For displaying to the user, you can use the user’s default encoding
using locale.getpreferredencoding() [http://docs.python.org/library/locale.html#locale.getpreferredencoding]. For entering into a file, you’re best
bet is to pick a single encoding and stick with it.

Warning

When using the encoding that the user has set (for instance, using
locale.getpreferredencoding() [http://docs.python.org/library/locale.html#locale.getpreferredencoding], remember that they may have their
encoding set to something that can’t display every single unicode
character. That means when you convert from unicode to a byte
str you need to decide what should happen if the byte value is
not valid in the user’s encoding. For purposes of displaying messages to
the user, it’s usually okay to use the replace encoding error handler
to replace the invalid characters with a question mark or other symbol
meaning the character couldn’t be displayed.

You can use kitchen.text.converters.getwriter() to do this automatically
for sys.stdout [http://docs.python.org/library/sys.html#sys.stdout]. When creating exception messages be sure to convert
to bytes manually.

When writing unittests, include non-ASCII values and both unicode and str type

Unless you know that a specific portion of your code will only deal with
ASCII, be sure to include non-ASCII values in your unittests.
Including a few characters from several different scripts is highly advised as
well because some code may have special cased accented roman characters but
not know how to handle characters used in Asian alphabets.

Similarly, unless you know that that portion of your code will only be given
unicode strings or only byte str be sure to try variables
of both types in your unittests. When doing this, make sure that the
variables are also non-ASCII as python’s implicit conversion will mask
problems with pure ASCII data. In many cases, it makes sense to check
what happens if byte str and unicode strings that won’t
decode in the present locale are given.

Be vigilant about spotting poor APIs

Make sure that the libraries you use return only unicode strings or
byte str. Unittests can help you spot issues here by running many
variations of data through your functions and checking that you’re still
getting the types of string that you expect.

Example: Putting this all together with kitchen

The kitchen library provides a wide array of functions to help you deal with
byte str and unicode strings in your program. Here’s
a short example that uses many kitchen functions to do its work:

#!/usr/bin/python -tt
-*- coding: utf-8 -*-
import locale
import os
import sys
import unicodedata

from kitchen.text.converters import getwriter, to_bytes, to_unicode
from kitchen.i18n import get_translation_object

if __name__ == '__main__':
 # Setup gettext driven translations but use the kitchen functions so
 # we don't have the mismatched bytes-unicode issues.
 translations = get_translation_object('example')
 # We use _() for marking strings that we operate on as unicode
 # This is pretty much everything
 _ = translations.ugettext
 # And b_() for marking strings that we operate on as bytes.
 # This is limited to exceptions
 b_ = translations.lgettext

 # Setup stdout
 encoding = locale.getpreferredencoding()
 Writer = getwriter(encoding)
 sys.stdout = Writer(sys.stdout)

 # Load data. Format is filename\0description
 # description should be utf-8 but filename can be any legal filename
 # on the filesystem
 # Sample datafile.txt:
 # /etc/shells\x00Shells available on caf\xc3\xa9.lan
 # /var/tmp/file\xff\x00File with non-utf8 data in the filename
 #
 # And to create /var/tmp/file\xff (under bash or zsh) do:
 # echo 'Some data' > /var/tmp/file$'\377'
 datafile = open('datafile.txt', 'r')
 data = {}
 for line in datafile:
 # We're going to keep filename as bytes because we will need the
 # exact bytes to access files on a POSIX operating system.
 # description, we'll immediately transform into unicode type.
 b_filename, description = line.split('\0', 1)

 # to_unicode defaults to decoding output from utf-8 and replacing
 # any problematic bytes with the unicode replacement character
 # We accept mangling of the description here knowing that our file
 # format is supposed to use utf-8 in that field and that the
 # description will only be displayed to the user, not used as
 # a key value.
 description = to_unicode(description, 'utf-8').strip()
 data[b_filename] = description
 datafile.close()

 # We're going to add a pair of extra fields onto our data to show the
 # length of the description and the filesize. We put those between
 # the filename and description because we haven't checked that the
 # description is free of NULLs.
 datafile = open('newdatafile.txt', 'w')

 # Name filename with a b_ prefix to denote byte string of unknown encoding
 for b_filename in data:
 # Since we have the byte representation of filename, we can read any
 # filename
 if os.access(b_filename, os.F_OK):
 size = os.path.getsize(b_filename)
 else:
 size = 0
 # Because the description is unicode type, we know the number of
 # characters corresponds to the length of the normalized unicode
 # string.
 length = len(unicodedata.normalize('NFC', description))

 # Print a summary to the screen
 # Note that we do not let implici type conversion from str to
 # unicode transform b_filename into a unicode string. That might
 # fail as python would use the ASCII filename. Instead we use
 # to_unicode() to explictly transform in a way that we know will
 # not traceback.
 print _(u'filename: %s') % to_unicode(b_filename)
 print _(u'file size: %s') % size
 print _(u'desc length: %s') % length
 print _(u'description: %s') % data[b_filename]

 # First combine the unicode portion
 line = u'%s\0%s\0%s' % (size, length, data[b_filename])
 # Since the filenames are bytes, turn everything else to bytes before combining
 # Turning into unicode first would be wrong as the bytes in b_filename
 # might not convert
 b_line = '%s\0%s\n' % (b_filename, to_bytes(line))

 # Just to demonstrate that getwriter will pass bytes through fine
 print b_('Wrote: %s') % b_line
 datafile.write(b_line)
 datafile.close()

 # And just to show how to properly deal with an exception.
 # Note two things about this:
 # 1) We use the b_() function to translate the string. This returns a
 # byte string instead of a unicode string
 # 2) We're using the b_() function returned by kitchen. If we had
 # used the one from gettext we would need to convert the message to
 # a byte str first
 message = u'Demonstrate the proper way to raise exceptions. Sincerely, \u3068\u3057\u304a'
 raise Exception(b_(message))

See also

kitchen.text.converters

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Using kitchen to write good code

Designing Unicode Aware APIs

APIs that deal with byte str and unicode strings are
difficult to get right. Here are a few strategies with pros and cons of each.

Contents

	Designing Unicode Aware APIs
	Take either bytes or unicode, output only unicode

	Take either bytes or unicode, output the same type

	Separate functions

	Deciding whether to take str or unicode when no value is returned
	Writing to external data

	Updating data structures

	APIs to Avoid
	Returning unicode unless a conversion fails

	Ignoring values with no chance of recovery

	Raising a UnicodeException with no chance of recovery

	Knowing your data
	Do you need to operate on both bytes and unicode?

	Can you restrict the encodings?
	Single byte encodings

	Multibyte encodings
	Fixed width

	Variable Width
	ASCII compatible

	Escaped

	Other

Take either bytes or unicode, output only unicode

In this strategy, you allow the user to enter either unicode strings
or byte str but what you give back is always unicode. This
strategy is easy for novice endusers to start using immediately as they will
be able to feed either type of string into the function and get back a string
that they can use in other places.

However, it does lead to the novice writing code that functions correctly when
testing it with ASCII-only data but fails when given data that contains
non-ASCII characters. Worse, if your API is not designed to be
flexible, the consumer of your code won’t be able to easily correct those
problems once they find them.

Here’s a good API that uses this strategy:

from kitchen.text.converters import to_unicode

def truncate(msg, max_length, encoding='utf8', errors='replace'):
 msg = to_unicode(msg, encoding, errors)
 return msg[:max_length]

The call to truncate() starts with the essential parameters for
performing the task. It ends with two optional keyword arguments that define
the encoding to use to transform from a byte str to unicode
and the strategy to use if undecodable bytes are encountered. The defaults
may vary depending on the use cases you have in mind. When the output is
generally going to be printed for the user to see, errors='replace' is
a good default. If you are constructing keys to a database, raisng an
exception (with errors='strict') may be a better default. In either case,
having both parameters allows the person using your API to choose how they
want to handle any problems. Having the values is also a clue to them that
a conversion from byte str to unicode string is going to
occur.

Note

If you’re targeting python-3.1 and above, errors='surrogateescape' may
be a better default than errors='strict'. You need to be mindful of
a few things when using surrogateescape though:

	surrogateescape will cause issues if a non-ASCII compatible
encoding is used (for instance, UTF-16 and UTF-32.) That makes it
unhelpful in situations where a true general purpose method of encoding
must be found. PEP 383 [http://www.python.org/dev/peps/pep-0383] mentions that surrogateescape was
specifically designed with the limitations of translating using system
locales (where ASCII compatibility is generally seen as
inescapable) so you should keep that in mind.

	If you use surrogateescape to decode from bytes
to unicode you will need to use an error handler other than
strict to encode as the lone surrogate that this error handler
creates makes for invalid unicode that must be handled when encoding.
In Python-3.1.2 or less, a bug in the encoder error handlers mean that
you can only use surrogateescape to encode; anything else will throw
an error.

Evaluate your usages of the variables in question to see what makes sense.

Here’s a bad example of using this strategy:

from kitchen.text.converters import to_unicode

def truncate(msg, max_length):
 msg = to_unicode(msg)
 return msg[:max_length]

In this example, we don’t have the optional keyword arguments for
encoding and errors. A user who uses this function is more
likely to miss the fact that a conversion from byte str to
unicode is going to occur. And once an error is reported, they will
have to look through their backtrace and think harder about where they want to
transform their data into unicode strings instead of having the
opportunity to control how the conversion takes place in the function itself.
Note that the user does have the ability to make this work by making the
transformation to unicode themselves:

from kitchen.text.converters import to_unicode

msg = to_unicode(msg, encoding='euc_jp', errors='ignore')
new_msg = truncate(msg, 5)

Take either bytes or unicode, output the same type

This strategy is sometimes called polymorphic because the type of data that is
returned is dependent on the type of data that is received. The concept is
that when you are given a byte str to process, you return a byte
str in your output. When you are given unicode strings to
process, you return unicode strings in your output.

This can work well for end users as the ones that know about the difference
between the two string types will already have transformed the strings to
their desired type before giving it to this function. The ones that don’t can
remain blissfully ignorant (at least, as far as your function is concerned) as
the function does not change the type.

In cases where the encoding of the byte str is known or can be
discovered based on the input data this works well. If you can’t figure out
the input encoding, however, this strategy can fail in any of the following
cases:

	It needs to do an internal conversion between byte str and
unicode string.

	It cannot return the same data as either a unicode string or byte
str.

	You may need to deal with byte strings that are not byte-compatible with
ASCII

First, a couple examples of using this strategy in a good way:

def translate(msg, table):
 replacements = table.keys()
 new_msg = []
 for index, char in enumerate(msg):
 if char in replacements:
 new_msg.append(table[char])
 else:
 new_msg.append(char)

 return ''.join(new_msg)

In this example, all of the strings that we use (except the empty string which
is okay because it doesn’t have any characters to encode) come from outside of
the function. Due to that, the user is responsible for making sure that the
msg, and the keys and values in table all match in terms of
type (unicode vs str) and encoding (You can do some error
checking to make sure the user gave all the same type but you can’t do the
same for the user giving different encodings). You do not need to make
changes to the string that require you to know the encoding or type of the
string; everything is a simple replacement of one element in the array of
characters in message with the character in table.

import json
from kitchen.text.converters import to_unicode, to_bytes

def first_field_from_json_data(json_string):
 '''Return the first field in a json data structure.

 The format of the json data is a simple list of strings.
 '["one", "two", "three"]'
 '''
 if isinstance(json_string, unicode):
 # On all python versions, json.loads() returns unicode if given
 # a unicode string
 return json.loads(json_string)[0]

 # Byte str: figure out which encoding we're dealing with
 if '\x00' not in json_data[:2]
 encoding = 'utf8'
 elif '\x00\x00\x00' == json_data[:3]:
 encoding = 'utf-32-be'
 elif '\x00\x00\x00' == json_data[1:4]:
 encoding = 'utf-32-le'
 elif '\x00' == json_data[0] and '\x00' == json_data[2]:
 encoding = 'utf-16-be'
 else:
 encoding = 'utf-16-le'

 data = json.loads(unicode(json_string, encoding))
 return data[0].encode(encoding)

In this example the function takes either a byte str type or
a unicode string that has a list in json format and returns the first
field from it as the type of the input string. The first section of code is
very straightforward; we receive a unicode string, parse it with
a function, and then return the first field from our parsed data (which our
function returned to us as json data).

The second portion that deals with byte str is not so
straightforward. Before we can parse the string we have to determine what
characters the bytes in the string map to. If we didn’t do that, we wouldn’t
be able to properly find which characters are present in the string. In order
to do that we have to figure out the encoding of the byte str.
Luckily, the json specification states that all strings are unicode and
encoded with one of UTF32be, UTF32le, UTF16be, UTF16le, or UTF-8. It further
defines the format such that the first two characters are always
ASCII. Each of these has a different sequence of NULLs when they
encode an ASCII character. We can use that to detect which encoding
was used to create the byte str.

Finally, we return the byte str by encoding the unicode back
to a byte str.

As you can see, in this example we have to convert from byte str to
unicode and back. But we know from the json specification that byte
str has to be one of a limited number of encodings that we are able
to detect. That ability makes this strategy work.

Now for some examples of using this strategy in ways that fail:

import unicodedata
def first_char(msg):
 '''Return the first character in a string'''
 if not isinstance(msg, unicode):
 try:
 msg = unicode(msg, 'utf8')
 except UnicodeError:
 msg = unicode(msg, 'latin1')
 msg = unicodedata.normalize('NFC', msg)
 return msg[0]

If you look at that code and think that there’s something fragile and prone to
breaking in the try: except: block you are correct in being suspicious.
This code will fail on multi-byte character sets that aren’t UTF-8. It
can also fail on data where the sequence of bytes is valid UTF-8 but
the bytes are actually of a different encoding. The reasons this code fails
is that we don’t know what encoding the bytes are in and the code must convert
from a byte str to a unicode string in order to function.

In order to make this code robust we must know the encoding of msg.
The only way to know that is to ask the user so the API must do that:

import unicodedata
def number_of_chars(msg, encoding='utf8', errors='strict'):
 if not isinstance(msg, unicode):
 msg = unicode(msg, encoding, errors)
 msg = unicodedata.normalize('NFC', msg)
 return len(msg)

Another example of failure:

import os
def listdir(directory):
 files = os.listdir(directory)
 if isinstance(directory, str):
 return files
 # files could contain both bytes and unicode
 new_files = []
 for filename in files:
 if not isinstance(filename, unicode):
 # What to do here?
 continue
 new_files.appen(filename)
 return new_files

This function illustrates the second failure mode. Here, not all of the
possible values can be represented as unicode without knowing more
about the encoding of each of the filenames involved. Since each filename
could have a different encoding there’s a few different options to pursue. We
could make this function always return byte str since that can
accurately represent anything that could be returned. If we want to return
unicode we need to at least allow the user to specify what to do in
case of an error decoding the bytes to unicode. We can also let the
user specify the encoding to use for doing the decoding but that won’t help in
all cases since not all files will be in the same encoding (or even
necessarily in any encoding):

import locale
import os
def listdir(directory, encoding=locale.getpreferredencoding(), errors='strict'):
 # Note: In python-3.1+, surrogateescape may be a better default
 files = os.listdir(directory)
 if isinstance(directory, str):
 return files
 new_files = []
 for filename in files:
 if not isinstance(filename, unicode):
 filename = unicode(filename, encoding=encoding, errors=errors)
 new_files.append(filename)
 return new_files

Note that although we use errors in this example as what to pass to
the codec that decodes to unicode we could also have an
errors argument that decides other things to do like skip a filename
entirely, return a placeholder (Nondisplayable filename), or raise an
exception.

This leaves us with one last failure to describe:

def first_field(csv_string):
 '''Return the first field in a comma separated values string.'''
 try:
 return csv_string[:csv_string.index(',')]
 except ValueError:
 return csv_string

This code looks simple enough. The hidden error here is that we are searching
for a comma character in a byte str but not all encodings will use
the same sequence of bytes to represent the comma. If you use an encoding
that’s not ASCII compatible on the byte level, then the literal comma
',' in the above code will match inappropriate bytes. Some examples of
how it can fail:

	Will find the byte representing an ASCII comma in another character

	Will find the comma but leave trailing garbage bytes on the end of the
string

	Will not match the character that represents the comma in this encoding

There are two ways to solve this. You can either take the encoding value from
the user or you can take the separator value from the user. Of the two,
taking the encoding is the better option for two reasons:

	Taking a separator argument doesn’t clearly document for the API user that
the reason they must give it is to properly match the encoding of the
csv_string. They’re just as likely to think that it’s simply a way
to specify an alternate character (like ”:” or “|”) for the separator.

	It’s possible for a variable width encoding to reuse the same byte sequence
for different characters in multiple sequences.

Note

UTF-8 is resistant to this as any character’s sequence of
bytes will never be a subset of another character’s sequence of bytes.

With that in mind, here’s how to improve the API:

def first_field(csv_string, encoding='utf-8', errors='replace'):
 if not isinstance(csv_string, unicode):
 u_string = unicode(csv_string, encoding, errors)
 is_unicode = False
 else:
 u_string = csv_string

 try:
 field = u_string[:U_string.index(u',')]
 except ValueError:
 return csv_string

 if not is_unicode:
 field = field.encode(encoding, errors)
 return field

Note

If you decide you’ll never encounter a variable width encoding that reuses
byte sequences you can use this code instead:

def first_field(csv_string, encoding='utf-8'):
 try:
 return csv_string[:csv_string.index(','.encode(encoding))]
 except ValueError:
 return csv_string

Separate functions

Sometimes you want to be able to take either byte str or
unicode strings, perform similar operations on either one and then
return data in the same format as was given. Probably the easiest way to do
that is to have separate functions for each and adopt a naming convention to
show that one is for working with byte str and the other is for
working with unicode strings:

def translate_b(msg, table):
 '''Replace values in str with other byte values like unicode.translate'''
 if not isinstance(msg, str):
 raise TypeError('msg must be of type str')
 str_table = [chr(s) for s in xrange(0,256)]
 delete_chars = []
 for chr_val in (k for k in table.keys() if isinstance(k, int)):
 if chr_val > 255:
 raise ValueError('Keys in table must not exceed 255)')
 if table[chr_val] == None:
 delete_chars.append(chr(chr_val))
 elif isinstance(table[chr_val], int):
 if table[chr_val] > 255:
 raise TypeError('table values cannot be more than 255 or less than 0')
 str_table[chr_val] = chr(table[chr_val])
 else:
 if not isinstance(table[chr_val], str):
 raise TypeError('character mapping must return integer, None or str')
 str_table[chr_val] = table[chr_val]
 str_table = ''.join(str_table)
 delete_chars = ''.join(delete_chars)
 return msg.translate(str_table, delete_chars)

def translate(msg, table):
 '''Replace values in a unicode string with other values'''
 if not isinstance(msg, unicode):
 raise TypeError('msg must be of type unicode')
 return msg.translate(table)

There’s several things that we have to do in this API:

	Because the function names might not be enough of a clue to the user of the
functions of the value types that are expected, we have to check that the
types are correct.

	We keep the behaviour of the two functions as close to the same as possible,
just with byte str and unicode strings substituted for
each other.

Deciding whether to take str or unicode when no value is returned

Not all functions have a return value. Sometimes a function is there to
interact with something external to python, for instance, writing a file out
to disk or a method exists to update the internal state of a data structure.
One of the main questions with these APIs is whether to take byte
str, unicode string, or both. The answer depends on your
use case but I’ll give some examples here.

Writing to external data

When your information is going to an external data source like writing to
a file you need to decide whether to take in unicode strings or byte
str. Remember that most external data sources are not going to be
dealing with unicode directly. Instead, they’re going to be dealing with
a sequence of bytes that may be interpreted as unicode. With that in mind,
you either need to have the user give you a byte str or convert to
a byte str inside the function.

Next you need to think about the type of data that you’re receiving. If it’s
textual data, (for instance, this is a chat client and the user is typing
messages that they expect to be read by another person) it probably makes sense to
take in unicode strings and do the conversion inside your function.
On the other hand, if this is a lower level function that’s passing data into
a network socket, it probably should be taking byte str instead.

Just as noted in the API notes above, you should specify an encoding
and errors argument if you need to transform from unicode
string to byte str and you are unable to guess the encoding from the
data itself.

Updating data structures

Sometimes your API is just going to update a data structure and not
immediately output that data anywhere. Just as when writing external data,
you should think about both what your function is going to do with the data
eventually and what the caller of your function is thinking that they’re
giving you. Most of the time, you’ll want to take unicode strings
and enter them into the data structure as unicode when the data is
textual in nature. You’ll want to take byte str and enter them into
the data structure as byte str when the data is not text. Use
a naming convention so the user knows what’s expected.

APIs to Avoid

There are a few APIs that are just wrong. If you catch yourself making an API
that does one of these things, change it before anyone sees your code.

Returning unicode unless a conversion fails

This type of API usually deals with byte str at some point and
converts it to unicode because it’s usually thought to be text.
However, there are times when the bytes fail to convert to a unicode
string. When that happens, this API returns the raw byte str instead
of a unicode string. One example of this is present in the python standard library [http://docs.python.org/library]:
python2’s os.listdir() [http://docs.python.org/library/os.html#os.listdir]:

>>> import os
>>> import locale
>>> locale.getpreferredencoding()
'UTF-8'
>>> os.mkdir('/tmp/mine')
>>> os.chdir('/tmp/mine')
>>> open('nonsense_char_\xff', 'w').close()
>>> open('all_ascii', 'w').close()
>>> os.listdir(u'.')
[u'all_ascii', 'nonsense_char_\xff']

The problem with APIs like this is that they cause failures that are hard to
debug because they don’t happen where the variables are set. For instance,
let’s say you take the filenames from os.listdir() [http://docs.python.org/library/os.html#os.listdir] and give it to this
function:

def normalize_filename(filename):
 '''Change spaces and dashes into underscores'''
 return filename.translate({ord(u' '):u'_', ord(u' '):u'_'})

When you test this, you use filenames that all are decodable in your preferred
encoding and everything seems to work. But when this code is run on a machine
that has filenames in multiple encodings the filenames returned by
os.listdir() [http://docs.python.org/library/os.html#os.listdir] suddenly include byte str. And byte str
has a different string.translate() [http://docs.python.org/library/string.html#string.translate] function that takes different values.
So the code raises an exception where it’s not immediately obvious that
os.listdir() [http://docs.python.org/library/os.html#os.listdir] is at fault.

Ignoring values with no chance of recovery

An early version of python3 attempted to fix the os.listdir() [http://docs.python.org/library/os.html#os.listdir] problem
pointed out in the last section by returning all values that were decodable to
unicode and omitting the filenames that were not. This lead to the
following output:

>>> import os
>>> import locale
>>> locale.getpreferredencoding()
'UTF-8'
>>> os.mkdir('/tmp/mine')
>>> os.chdir('/tmp/mine')
>>> open(b'nonsense_char_\xff', 'w').close()
>>> open('all_ascii', 'w').close()
>>> os.listdir('.')
['all_ascii']

The issue with this type of code is that it is silently doing something
surprising. The caller expects to get a full list of files back from
os.listdir() [http://docs.python.org/library/os.html#os.listdir]. Instead, it silently ignores some of the files, returning
only a subset. This leads to code that doesn’t do what is expected that may
go unnoticed until the code is in production and someone notices that
something important is being missed.

Raising a UnicodeException with no chance of recovery

Believe it or not, a few libraries exist that make it impossible to deal
with unicode text without raising a UnicodeError. What seems to occur
in these libraries is that the library has functions that expect to receive
a unicode string. However, internally, those functions call other
functions that expect to receive a byte str. The programmer of the
API was smart enough to convert from a unicode string to a byte
str but they did not give the user the chance to specify the
encodings to use or how to deal with errors. This results in exceptions when
the user passes in a byte str because the initial function wants
a unicode string and exceptions when the user passes in
a unicode string because the function can’t convert the string to
bytes in the encoding that it’s selected.

Do not put the user in the position of not being able to use your API without
raising a UnicodeError with certain values. If you can only safely
take unicode strings, document that byte str is not allowed
and vice versa. If you have to convert internally, make sure to give the
caller of your function parameters to control the encoding and how to treat
errors that may occur during the encoding/decoding process. If your code will
raise a UnicodeError with non-ASCII values no matter what, you
should probably rethink your API.

Knowing your data

If you’ve read all the way down to this section without skipping you’ve seen
several admonitions about the type of data you are processing affecting the
viability of the various API choices.

Here’s a few things to consider in your data:

Do you need to operate on both bytes and unicode?

Much of the data in libraries, programs, and the general environment outside
of python is written where strings are sequences of bytes. So when we
interact with data that comes from outside of python or data that is about to
leave python it may make sense to only operate on the data as a byte
str. There’s two times when this may make sense:

	The user is intended to hand the data to the function and then the function
takes care of sending the data outside of python (to the filesystem, over
the network, etc).

	The data is not representable as text. For instance, writing a binary
file format.

Even when your code is operating in this area you still need to think a little
more about your data. For instance, it might make sense for the person using
your API to pass in unicode strings and let the function convert that
into the byte str that it then sends over the wire.

There are also times when it might make sense to operate only on
unicode strings. unicode represents text so anytime that
you are working on textual data that isn’t going to leave python it has the
potential to be a unicode-only API. However, there’s two things that
you should consider when designing a unicode-only API:

	As your API gains popularity, people are going to use your API in places
that you may not have thought of. Corner cases in these other places may
mean that processing bytes is desirable.

	In python2, byte str and unicode are often used
interchangably with each other. That means that people programming against
your API may have received str from some other API and it would be
most convenient for their code if your API accepted it.

Note

In python3, the separation between the text type and the byte type
are more clear. So in python3, there’s less need to have all APIs take
both unicode and bytes.

Can you restrict the encodings?

If you determine that you have to deal with byte str you should
realize that not all encodings are created equal. Each has different
properties that may make it possible to provide a simpler API provided that
you can reasonably tell the users of your API that they cannot use certain
classes of encodings.

As one example, if you are required to find a comma (,) in a byte
str you have different choices based on what encodings are allowed.
If you can reasonably restrict your API users to only giving ASCII
compatible encodings you can do this simply by searching for the literal
comma character because that character will be represented by the same byte
sequence in all ASCII compatible encodings.

The following are some classes of encodings to be aware of as you decide how
generic your code needs to be.

Single byte encodings

Single byte encodings can only represent 256 total characters. They encode
the code points for a character to the equivalent number in a single
byte.

Most single byte encodings are ASCII compatible. ASCII
compatible encodings are the most likely to be usable without changes to code
so this is good news. A notable exception to this is the EBDIC [http://en.wikipedia.org/wiki/Extended_Binary_Coded_Decimal_Interchange_Code]
family of encodings.

Multibyte encodings

Multibyte encodings use more than one byte to encode some characters.

Fixed width

Fixed width encodings have a set number of bytes to represent all of the
characters in the character set. UTF-32 is an example of a fixed width
encoding that uses four bytes per character and can express every unicode
characters. There are a number of problems with writing APIs that need to
operate on fixed width, multibyte characters. To go back to our earlier
example of finding a comma in a string, we have to realize that even in
UTF-32 where the code point for ASCII characters is the
same as in ASCII, the byte sequence for them is different. So you
cannot search for the literal byte character as it may pick up false
positives and may break a byte sequence in an odd place.

Variable Width

ASCII compatible

UTF-8 and the EUC [http://en.wikipedia.org/wiki/Extended_Unix_Code]
family of encodings are examples of ASCII compatible multi-byte
encodings. They achieve this by adhering to two principles:

	All of the ASCII characters are represented by the byte that they
are in the ASCII encoding.

	None of the ASCII byte sequences are reused in any other byte
sequence for a different character.

Escaped

Some multibyte encodings work by using only bytes from the ASCII
encoding but when a particular sequence of those byes is found, they are
interpreted as meaning something other than their ASCII values.
UTF-7 is one such encoding that can encode all of the unicode
code points. For instance, here’s a some Japanese characters encoded as
UTF-7:

>>> a = u'\u304f\u3089\u3068\u307f'
>>> print a
くらとみ
>>> print a.encode('utf-7')
+ME8wiTBoMH8-

These encodings can be used when you need to encode unicode data that may
contain non-ASCII characters for inclusion in an ASCII only
transport medium or file.

However, they are not ASCII compatible in the sense that we used
earlier as the bytes that represent a ASCII character are being reused
as part of other characters. If you were to search for a literal plus sign in
this encoded string, you would run across many false positives, for instance.

Other

There are many other popular variable width encodings, for instance UTF-16
and shift-JIS. Many of these are not ASCII compatible so you
cannot search for a literal ASCII character without danger of false
positives or false negatives.

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

Kitchen API

Kitchen is structured as a collection of modules. In its current
configuration, Kitchen ships with the following modules. Other addon modules
that may drag in more dependencies can be found on the project webpage [https://fedorahosted.org/kitchen]

	Kitchen.i18n Module
	Functions

	Translation Objects

	Kitchen.text: unicode and utf8 and xml oh my!
	Kitchen.text.converters

	Functions

	Format Text for Display

	Internal Data

	Miscellaneous functions for manipulating text

	UTF-8

	Kitchen.collections
	StrictDict

	Kitchen.iterutils Module

	Helpers for versioning software
	PEP-386 compliant versioning

	Python 2.4 Compatibiity
	Sets for python-2.3

	Partial new style base64 interface

	Subprocess

	Python 2.5 Compatibility
	defaultdict

	Python 2.7 Compatibility
	Subprocess from Python 2.7

	Exceptions
	Base kitchen exceptions

	Kitchen.text exceptions

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

Kitchen.i18n Module

I18N is an important piece of any modern program. Unfortunately,
setting up i18n in your program is often a confusing process. The
functions provided here aim to make the programming side of that a little
easier.

Most projects will be able to do something like this when they startup:

myprogram/__init__.py:

import os
import sys

from kitchen.i18n import easy_gettext_setup

, N = easy_gettext_setup('myprogram', localedirs=(
 os.path.join(os.path.realpath(os.path.dirname(__file__)), 'locale'),
 os.path.join(sys.prefix, 'lib', 'locale')
))

Then, in other files that have strings that need translating:

myprogram/commands.py:

from myprogram import _, N_

def print_usage():
 print _(u"""available commands are:
 --help Display help
 --version Display version of this program
 --bake-me-a-cake as fast as you can
 """)

def print_invitations(age):
 print _('Please come to my party.')
 print N_('I will be turning %(age)s year old',
 'I will be turning %(age)s years old', age) % {'age': age}

See the documentation of easy_gettext_setup() and
get_translation_object() for more details.

See also

	gettext [http://docs.python.org/library/gettext.html#module-gettext]

	for details of how the python gettext facilities work

	babel [http://babel.edgewall.org]

	The babel module for in depth information on gettext, message
catalogs, and translating your app. babel provides some nice
features for i18n on top of gettext [http://docs.python.org/library/gettext.html#module-gettext]

Functions

easy_gettext_setup() should satisfy the needs of most users.
get_translation_object() is designed to ease the way for anyone that
needs more control.

	
kitchen.i18n.easy_gettext_setup(domain, localedirs=(), use_unicode=True)

	Setup translation functions for an application

	Parameters:	
	domain – Name of the message domain. This should be a unique name
that can be used to lookup the message catalog for this app.

	localedirs – Iterator of directories to look for message
catalogs under. The first directory to exist is used regardless of
whether messages for this domain are present. If none of the
directories exist, fallback on sys.prefix + /share/locale
Default: No directories to search so we just use the fallback.

	use_unicode – If True [http://docs.python.org/library/constants.html#True] return the gettext [http://docs.python.org/library/gettext.html#module-gettext] functions
for unicode strings else return the functions for byte
str for the translations. Default is True [http://docs.python.org/library/constants.html#True].

	Returns:	tuple of the gettext [http://docs.python.org/library/gettext.html#module-gettext] function and gettext [http://docs.python.org/library/gettext.html#module-gettext] function
for plurals

Setting up gettext [http://docs.python.org/library/gettext.html#module-gettext] can be a little tricky because of lack of
documentation. This function will setup gettext [http://docs.python.org/library/gettext.html#module-gettext] using the
Class-based API [http://docs.python.org/library/gettext.html#class-based-api] for you.
For the simple case, you can use the default arguments and call it like
this:

, N = easy_gettext_setup()

This will get you two functions, _() and N_() that you can use
to mark strings in your code for translation. _() is used to mark
strings that don’t need to worry about plural forms no matter what the
value of the variable is. N_() is used to mark strings that do need
to have a different form if a variable in the string is plural.

See also

	Kitchen.i18n Module

	This module’s documentation has examples of using _() and N_()

	get_translation_object()

	for information on how to use localedirs to get the
proper message catalogs both when in development and when
installed to FHS compliant directories on Linux.

Note

The gettext functions returned from this function should be superior
to the ones returned from gettext [http://docs.python.org/library/gettext.html#module-gettext]. The traits that make them
better are described in the DummyTranslations and
NewGNUTranslations documentation.

Changed in version kitchen-0.2.4: ; API kitchen.i18n 2.0.0
Changed easy_gettext_setup() to return the lgettext
functions instead of gettext functions when use_unicode=False.

	
kitchen.i18n.get_translation_object(domain, localedirs=(), languages=None, class_=None, fallback=True, codeset=None, python2_api=True)

	Get a translation object bound to the message catalogs

	Parameters:	
	domain – Name of the message domain. This should be a unique name
that can be used to lookup the message catalog for this app or
library.

	localedirs – Iterator of directories to look for
message catalogs under. The directories are searched in order
for message catalogs. For each of the directories searched,
we check for message catalogs in any language specified
in:attr:languages. The message catalogs are used to create
the Translation object that we return. The Translation object will
attempt to lookup the msgid in the first catalog that we found. If
it’s not in there, it will go through each subsequent catalog looking
for a match. For this reason, the order in which you specify the
localedirs may be important. If no message catalogs
are found, either return a DummyTranslations object or raise
an IOError depending on the value of fallback.
Rhe default localedir from gettext [http://docs.python.org/library/gettext.html#module-gettext] which is
os.path.join(sys.prefix, 'share', 'locale') on Unix is
implicitly appended to the localedirs, making it the last
directory searched.

	languages – Iterator of language codes to check for
message catalogs. If unspecified, the user’s locale settings
will be used.

See also

gettext.find() [http://docs.python.org/library/gettext.html#gettext.find] for information on what environment
variables are used.

	class – The class to use to extract translations from the
message catalogs. Defaults to NewGNUTranslations.

	fallback – If set to data:False, raise an IOError if no
message catalogs are found. If True [http://docs.python.org/library/constants.html#True], the default,
return a DummyTranslations object.

	codeset – Set the character encoding to use when returning byte
str objects. This is equivalent to calling
output_charset() on the Translations
object that is returned from this function.

	python2_api – When data:True (default), return Translation objects
that use the python2 gettext api
(gettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.gettext] and
lgettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.lgettext] return byte
str. ugettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.ugettext] exists and
returns unicode strings). When False [http://docs.python.org/library/constants.html#False], return
Translation objects that use the python3 gettext api (gettext returns
unicode strings and lgettext returns byte str.
ugettext does not exist.)

	Returns:	Translation object to get gettext [http://docs.python.org/library/gettext.html#module-gettext] methods from

If you need more flexibility than easy_gettext_setup(), use this
function. It sets up a gettext [http://docs.python.org/library/gettext.html#module-gettext] Translation object and returns it
to you. Then you can access any of the methods of the object that you
need directly. For instance, if you specifically need to access
lgettext():

translations = get_translation_object('foo')
translations.lgettext('My Message')

This function is similar to the python standard library [http://docs.python.org/library] gettext.translation() [http://docs.python.org/library/gettext.html#gettext.translation] but
makes it better in two ways

	
	It returns NewGNUTranslations or DummyTranslations

	objects by default. These are superior to the
gettext.GNUTranslations and gettext.NullTranslations [http://docs.python.org/library/gettext.html#gettext.NullTranslations]
objects because they are consistent in the string type they return and
they fix several issues that can causethe python standard library [http://docs.python.org/library] objects to throw
UnicodeError.

	
	This function takes multiple directories to search for

	message catalogs.

The latter is important when setting up gettext [http://docs.python.org/library/gettext.html#module-gettext] in a portable
manner. There is not a common directory for translations across operating
systems so one needs to look in multiple directories for the translations.
get_translation_object() is able to handle that if you give it
a list of directories to search for catalogs:

translations = get_translation_object('foo', localedirs=(
 os.path.join(os.path.realpath(os.path.dirname(__file__)), 'locale'),
 os.path.join(sys.prefix, 'lib', 'locale')))

This will search for several different directories:

	A directory named locale in the same directory as the module
that called get_translation_object(),

	In /usr/lib/locale

	In /usr/share/locale (the fallback directory)

This allows gettext [http://docs.python.org/library/gettext.html#module-gettext] to work on Windows and in development (where the
message catalogs are typically in the toplevel module directory)
and also when installed under Linux (where the message catalogs
are installed in /usr/share/locale). You (or the system packager)
just need to install the message catalogs in
/usr/share/locale and remove the locale directory from the
module to make this work. ie:

In development:
 ~/foo # Toplevel module directory
 ~/foo/__init__.py
 ~/foo/locale # With message catalogs below here:
 ~/foo/locale/es/LC_MESSAGES/foo.mo

Installed on Linux:
 /usr/lib/python2.7/site-packages/foo
 /usr/lib/python2.7/site-packages/foo/__init__.py
 /usr/share/locale/ # With message catalogs below here:
 /usr/share/locale/es/LC_MESSAGES/foo.mo

Note

This function will setup Translation objects that attempt to lookup
msgids in all of the found message catalogs. This means if
you have several versions of the message catalogs installed
in different directories that the function searches, you need to make
sure that localedirs specifies the directories so that newer
message catalogs are searched first. It also means that if
a newer catalog does not contain a translation for a msgid but an
older one that’s in localedirs does, the translation from that
older catalog will be returned.

Changed in version kitchen-1.1.0: ; API kitchen.i18n 2.1.0
Add more parameters to get_translation_object() so
it can more easily be used as a replacement for
gettext.translation() [http://docs.python.org/library/gettext.html#gettext.translation]. Also change the way we use localedirs.
We cycle through them until we find a suitable locale file rather
than simply cycling through until we find a directory that exists.
The new code is based heavily on the python standard library [http://docs.python.org/library]
gettext.translation() [http://docs.python.org/library/gettext.html#gettext.translation] function.

Changed in version kitchen-1.2.0: ; API kitchen.i18n 2.2.0
Add python2_api parameter

Translation Objects

The standard translation objects from the gettext [http://docs.python.org/library/gettext.html#module-gettext] module suffer from
several problems:

	They can throw UnicodeError

	They can’t find translations for non-ASCII byte str
messages

	They may return either unicode string or byte str from the
same function even though the functions say they will only return
unicode or only return byte str.

DummyTranslations and NewGNUTranslations were written to fix
these issues.

	
class kitchen.i18n.DummyTranslations(fp=None, python2_api=True)

	Safer version of gettext.NullTranslations [http://docs.python.org/library/gettext.html#gettext.NullTranslations]

This Translations class doesn’t translate the strings and is intended to
be used as a fallback when there were errors setting up a real
Translations object. It’s safer than gettext.NullTranslations [http://docs.python.org/library/gettext.html#gettext.NullTranslations] in
its handling of byte str vs unicode strings.

Unlike NullTranslations [http://docs.python.org/library/gettext.html#gettext.NullTranslations], this Translation class will
never throw a UnicodeError [http://docs.python.org/library/exceptions.html#exceptions.UnicodeError]. The code that you have
around a call to DummyTranslations might throw
a UnicodeError [http://docs.python.org/library/exceptions.html#exceptions.UnicodeError] but at least that will be in code you
control and can fix. Also, unlike NullTranslations [http://docs.python.org/library/gettext.html#gettext.NullTranslations] all
of this Translation object’s methods guarantee to return byte str
except for ugettext() and ungettext() which guarantee to
return unicode strings.

When byte str are returned, the strings will be encoded according
to this algorithm:

	If a fallback has been added, the fallback will be called first.
You’ll need to consult the fallback to see whether it performs any
encoding changes.

	If a byte str was given, the same byte str will
be returned.

	If a unicode string was given and set_output_charset()
has been called then we encode the string using the
output_charset

	If a unicode string was given and this is gettext() or
ngettext() and _charset was set output in that charset.

	If a unicode string was given and this is gettext()
or ngettext() we encode it using ‘utf-8’.

	If a unicode string was given and this is lgettext()
or lngettext() we encode using the value of
locale.getpreferredencoding() [http://docs.python.org/library/locale.html#locale.getpreferredencoding]

For ugettext() and ungettext(), we go through the same set of
steps with the following differences:

	We transform byte str into unicode strings for
these methods.

	The encoding used to decode the byte str is taken from
input_charset if it’s set, otherwise we decode using
UTF-8.

	
input_charset

	is an extension to the python standard library [http://docs.python.org/library] gettext [http://docs.python.org/library/gettext.html#module-gettext] that specifies what
charset a message is encoded in when decoding a message to
unicode. This is used for two purposes:

	If the message string is a byte str, this is used to decode
the string to a unicode string before looking it up in the
message catalog.

	In ugettext() and
ungettext() methods, if a byte
str is given as the message and is untranslated this is used
as the encoding when decoding to unicode. This is different
from _charset which may be set when a message catalog
is loaded because input_charset is used to describe an encoding
used in a python source file while _charset describes the
encoding used in the message catalog file.

Any characters that aren’t able to be transformed from a byte str
to unicode string or vice versa will be replaced with
a replacement character (ie: u'�' in unicode based encodings, '?' in other
ASCII compatible encodings).

See also

	gettext.NullTranslations [http://docs.python.org/library/gettext.html#gettext.NullTranslations]

	For information about what methods are available and what they do.

Changed in version kitchen-1.1.0: ; API kitchen.i18n 2.1.0
* Although we had adapted gettext(), ngettext(),
 lgettext(), and lngettext() to always return byte
 str, we hadn’t forced those byte str to always be
 in a specified charset. We now make sure that gettext() and
 ngettext() return byte str encoded using
 output_charset if set, otherwise charset and if
 neither of those, UTF-8. With lgettext() and
 lngettext() output_charset if set, otherwise
 locale.getpreferredencoding() [http://docs.python.org/library/locale.html#locale.getpreferredencoding].
* Make setting input_charset and output_charset also
 set those attributes on any fallback translation objects.

Changed in version kitchen-1.2.0: ; API kitchen.i18n 2.2.0
Add python2_api parameter to __init__()

	
set_output_charset(charset)

	Set the output charset

This serves two purposes. The normal
gettext.NullTranslations.set_output_charset() [http://docs.python.org/library/gettext.html#gettext.NullTranslations.set_output_charset] does not set the
output on fallback objects. On python-2.3,
gettext.NullTranslations [http://docs.python.org/library/gettext.html#gettext.NullTranslations] objects don’t contain this method.

	
class kitchen.i18n.NewGNUTranslations(fp=None, python2_api=True)

	Safer version of gettext.GNUTranslations

gettext.GNUTranslations suffers from two problems that this
class fixes.

	gettext.GNUTranslations can throw a
UnicodeError [http://docs.python.org/library/exceptions.html#exceptions.UnicodeError] in
gettext.GNUTranslations.ugettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.ugettext] if the message being
translated has non-ASCII characters and there is no translation
for it.

	gettext.GNUTranslations can return byte str from
gettext.GNUTranslations.ugettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.ugettext] and unicode
strings from the other gettext() [http://docs.python.org/library/gettext.html#gettext.GNUTranslations.gettext]
methods if the message being translated is the wrong type

When byte str are returned, the strings will be encoded
according to this algorithm:

	If a fallback has been added, the fallback will be called first.
You’ll need to consult the fallback to see whether it performs any
encoding changes.

	If a byte str was given, the same byte str will
be returned.

	If a unicode string was given and
set_output_charset() has been called then we encode the
string using the output_charset

	If a unicode string was given and this is gettext()
or ngettext() and a charset was detected when parsing the
message catalog, output in that charset.

	If a unicode string was given and this is gettext()
or ngettext() we encode it using UTF-8.

	If a unicode string was given and this is lgettext()
or lngettext() we encode using the value of
locale.getpreferredencoding() [http://docs.python.org/library/locale.html#locale.getpreferredencoding]

For ugettext() and ungettext(), we go through the same set of
steps with the following differences:

	We transform byte str into unicode strings for these
methods.

	The encoding used to decode the byte str is taken from
input_charset if it’s set, otherwise we decode using
UTF-8

	
input_charset

	an extension to the python standard library [http://docs.python.org/library] gettext [http://docs.python.org/library/gettext.html#module-gettext] that specifies what
charset a message is encoded in when decoding a message to
unicode. This is used for two purposes:

	If the message string is a byte str, this is used to decode
the string to a unicode string before looking it up in the
message catalog.

	In ugettext() and
ungettext() methods, if a byte
str is given as the message and is untranslated his is used as
the encoding when decoding to unicode. This is different from
the _charset parameter that may be set when a message
catalog is loaded because input_charset is used to describe an
encoding used in a python source file while _charset describes
the encoding used in the message catalog file.

Any characters that aren’t able to be transformed from a byte
str to unicode string or vice versa will be replaced
with a replacement character (ie: u'�' in unicode based encodings,
'?' in other ASCII compatible encodings).

See also

	gettext.GNUTranslations.gettext

	For information about what methods this class has and what they do

Changed in version kitchen-1.1.0: ; API kitchen.i18n 2.1.0
Although we had adapted gettext(), ngettext(),
lgettext(), and lngettext() to always return
byte str, we hadn’t forced those byte str to always
be in a specified charset. We now make sure that gettext() and
ngettext() return byte str encoded using
output_charset if set, otherwise charset and if
neither of those, UTF-8. With lgettext() and
lngettext() output_charset if set, otherwise
locale.getpreferredencoding() [http://docs.python.org/library/locale.html#locale.getpreferredencoding].

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

Kitchen.text: unicode and utf8 and xml oh my!

The kitchen.text module contains functions that deal with text manipulation.

	Kitchen.text.converters
	Byte Strings and Unicode in Python2

	Strategy for Explicit Conversion
	When to use an alternate strategy

	Gotchas and how to avoid them
	str(obj)

	print

	Unicode, str, and dict keys

	Functions
	Unicode and byte str conversion

	Transformation to XML

	Working with exception messages

	Format Text for Display

	Internal Data

	Miscellaneous functions for manipulating text

	UTF-8

	converters

	deals with converting text for different encodings and to and from XML

	display

	deals with issues with printing text to a screen

	misc

	is a catchall for text manipulation functions that don’t seem to fit
elsewhere

	utf8

	contains deprecated functions to manipulate utf8 byte strings

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

 	Kitchen.text: unicode and utf8 and xml oh my!

Kitchen.text.converters

Functions to handle conversion of byte str and unicode
strings.

Changed in version kitchen: 0.2a2 ; API kitchen.text 2.0.0
Added getwriter()

Changed in version kitchen: 0.2.2 ; API kitchen.text 2.1.0
Added exception_to_unicode(),
exception_to_bytes(),
EXCEPTION_CONVERTERS,
and BYTE_EXCEPTION_CONVERTERS

Changed in version kitchen: 1.0.1 ; API kitchen.text 2.1.1
Deprecated BYTE_EXCEPTION_CONVERTERS as
we’ve simplified exception_to_unicode() and
exception_to_bytes() to make it unnecessary

Byte Strings and Unicode in Python2

Python2 has two string types, str and unicode.
unicode represents an abstract sequence of text characters. It can
hold any character that is present in the unicode standard. str can
hold any byte of data. The operating system and python work together to
display these bytes as characters in many cases but you should always keep in
mind that the information is really a sequence of bytes, not a sequence of
characters. In python2 these types are interchangeable a large amount of the
time. They are one of the few pairs of types that automatically convert when
used in equality:

>>> # string is converted to unicode and then compared
>>> "I am a string" == u"I am a string"
True
>>> # Other types, like int, don't have this special treatment
>>> 5 == "5"
False

However, this automatic conversion tends to lull people into a false sense of
security. As long as you’re dealing with ASCII characters the
automatic conversion will save you from seeing any differences. Once you
start using characters that are not in ASCII, you will start getting
UnicodeError and UnicodeWarning as the automatic conversions
between the types fail:

>>> "I am an ñ" == u"I am an ñ"
__main__:1: UnicodeWarning: Unicode equal comparison failed to convert both arguments to Unicode - interpreting them as being unequal
False

Why do these conversions fail? The reason is that the python2
unicode type represents an abstract sequence of unicode text known as
code points. str, on the other hand, really represents
a sequence of bytes. Those bytes are converted by your operating system to
appear as characters on your screen using a particular encoding (usually
with a default defined by the operating system and customizable by the
individual user.) Although ASCII characters are fairly standard in
what bytes represent each character, the bytes outside of the ASCII
range are not. In general, each encoding will map a different character to
a particular byte. Newer encodings map individual characters to multiple
bytes (which the older encodings will instead treat as multiple characters).
In the face of these differences, python refuses to guess at an encoding and
instead issues a warning or exception and refuses to convert.

See also

	Overcoming frustration: Correctly using unicode in python2

	For a longer introduction on this subject.

Strategy for Explicit Conversion

So what is the best method of dealing with this weltering babble of incoherent
encodings? The basic strategy is to explicitly turn everything into
unicode when it first enters your program. Then, when you send it to
output, you can transform the unicode back into bytes. Doing this allows you
to control the encodings that are used and avoid getting tracebacks due to
UnicodeError. Using the functions defined in this module, that looks
something like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	>>> from kitchen.text.converters import to_unicode, to_bytes
>>> name = raw_input('Enter your name: ')
Enter your name: Toshio くらとみ
>>> name
'Toshio \xe3\x81\x8f\xe3\x82\x89\xe3\x81\xa8\xe3\x81\xbf'
>>> type(name)
<type 'str'>
>>> unicode_name = to_unicode(name)
>>> type(unicode_name)
<type 'unicode'>
>>> unicode_name
u'Toshio \u304f\u3089\u3068\u307f'
>>> # Do a lot of other things before needing to save/output again:
>>> output = open('datafile', 'w')
>>> output.write(to_bytes(u'Name: %s\\n' % unicode_name))

A few notes:

Looking at line 6, you’ll notice that the input we took from the user was
a byte str. In general, anytime we’re getting a value from outside
of python (The filesystem, reading data from the network, interacting with an
external command, reading values from the environment) we are interacting with
something that will want to give us a byte str. Some python standard library [http://docs.python.org/library]
modules and third party libraries will automatically attempt to convert a byte
str to unicode strings for you. This is both a boon and
a curse. If the library can guess correctly about the encoding that the data
is in, it will return unicode objects to you without you having to
convert. However, if it can’t guess correctly, you may end up with one of
several problems:

	UnicodeError

	The library attempted to decode a byte str into
a unicode, string failed, and raises an exception.

	Garbled data

	If the library returns the data after decoding it with the wrong encoding,
the characters you see in the unicode string won’t be the ones that
you expect.

	A byte str instead of unicode string

	Some libraries will return a unicode string when they’re able to
decode the data and a byte str when they can’t. This is
generally the hardest problem to debug when it occurs. Avoid it in your
own code and try to avoid or open bugs against upstreams that do this. See
Designing Unicode Aware APIs for strategies to do this properly.

On line 8, we convert from a byte str to a unicode string.
to_unicode() does this for us. It has some
error handling and sane defaults that make this a nicer function to use than
calling str.decode() [http://docs.python.org/library/stdtypes.html#str.decode] directly:

	Instead of defaulting to the ASCII encoding which fails with all
but the simple American English characters, it defaults to UTF-8.

	Instead of raising an error if it cannot decode a value, it will replace
the value with the unicode “Replacement character” symbol (�).

	If you happen to call this method with something that is not a str
or unicode, it will return an empty unicode string.

All three of these can be overridden using different keyword arguments to the
function. See the to_unicode() documentation for more information.

On line 15 we push the data back out to a file. Two things you should note here:

	We deal with the strings as unicode until the last instant. The
string format that we’re using is unicode and the variable also
holds unicode. People sometimes get into trouble when they mix
a byte str format with a variable that holds a unicode
string (or vice versa) at this stage.

	to_bytes(), does the reverse of
to_unicode(). In this case, we’re using the default values which
turn unicode into a byte str using UTF-8. Any
errors are replaced with a � and sending nonstring objects yield empty
unicode strings. Just like to_unicode(), you can look at
the documentation for to_bytes() to find out how to override any of
these defaults.

When to use an alternate strategy

The default strategy of decoding to unicode strings when you take
data in and encoding to a byte str when you send the data back out
works great for most problems but there are a few times when you shouldn’t:

	The values aren’t meant to be read as text

	The values need to be byte-for-byte when you send them back out – for
instance if they are database keys or filenames.

	You are transferring the data between several libraries that all expect
byte str.

In each of these instances, there is a reason to keep around the byte
str version of a value. Here’s a few hints to keep your sanity in
these situations:

	Keep your unicode and str values separate. Just like the
pain caused when you have to use someone else’s library that returns both
unicode and str you can cause yourself pain if you have
functions that can return both types or variables that could hold either
type of value.

	Name your variables so that you can tell whether you’re storing byte
str or unicode string. One of the first things you end
up having to do when debugging is determine what type of string you have in
a variable and what type of string you are expecting. Naming your
variables consistently so that you can tell which type they are supposed to
hold will save you from at least one of those steps.

	When you get values initially, make sure that you’re dealing with the type
of value that you expect as you save it. You can use isinstance() [http://docs.python.org/library/functions.html#isinstance]
or to_bytes() since to_bytes() doesn’t do any modifications of
the string if it’s already a str. When using to_bytes()
for this purpose you might want to use:

try:
 b_input = to_bytes(input_should_be_bytes_already, errors='strict', nonstring='strict')
except:
 handle_errors_somehow()

The reason is that the default of to_bytes() will take characters
that are illegal in the chosen encoding and transform them to replacement
characters. Since the point of keeping this data as a byte str is
to keep the exact same bytes when you send it outside of your code,
changing things to replacement characters should be rasing red flags that
something is wrong. Setting errors to strict will raise an
exception which gives you an opportunity to fail gracefully.

	Sometimes you will want to print out the values that you have in your byte
str. When you do this you will need to make sure that you
transform unicode to str before combining them. Also be
sure that any other function calls (including gettext [http://docs.python.org/library/gettext.html#module-gettext]) are going to
give you strings that are the same type. For instance:

print to_bytes(_('Username: %(user)s'), 'utf-8') % {'user': b_username}

Gotchas and how to avoid them

Even when you have a good conceptual understanding of how python2 treats
unicode and str there are still some things that can
surprise you. In most cases this is because, as noted earlier, python or one
of the python libraries you depend on is trying to convert a value
automatically and failing. Explicit conversion at the appropriate place
usually solves that.

str(obj)

One common idiom for getting a simple, string representation of an object is to use:

str(obj)

Unfortunately, this is not safe. Sometimes str(obj) will return
unicode. Sometimes it will return a byte str. Sometimes,
it will attempt to convert from a unicode string to a byte
str, fail, and throw a UnicodeError. To be safe from all of
these, first decide whether you need unicode or str to be
returned. Then use to_unicode() or to_bytes() to get the simple
representation like this:

u_representation = to_unicode(obj, nonstring='simplerepr')
b_representation = to_bytes(obj, nonstring='simplerepr')

print

python has a builtin print() [http://docs.python.org/library/functions.html#print] statement that outputs strings to the
terminal. This originated in a time when python only dealt with byte
str. When unicode strings came about, some enhancements
were made to the print() [http://docs.python.org/library/functions.html#print] statement so that it could print those as well.
The enhancements make print() [http://docs.python.org/library/functions.html#print] work most of the time. However, the times
when it doesn’t work tend to make for cryptic debugging.

The basic issue is that print() [http://docs.python.org/library/functions.html#print] has to figure out what encoding to use
when it prints a unicode string to the terminal. When python is
attached to your terminal (ie, you’re running the interpreter or running
a script that prints to the screen) python is able to take the encoding value
from your locale settings LC_ALL or LC_CTYPE and print the
characters allowed by that encoding. On most modern Unix systems, the
encoding is utf-8 which means that you can print any unicode
character without problem.

There are two common cases of things going wrong:

	Someone has a locale set that does not accept all valid unicode characters.
For instance:

$ LC_ALL=C python
>>> print u'\ufffd'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
UnicodeEncodeError: 'ascii' codec can't encode character u'\ufffd' in position 0: ordinal not in range(128)

This often happens when a script that you’ve written and debugged from the
terminal is run from an automated environment like cron. It
also occurs when you have written a script using a utf-8 aware
locale and released it for consumption by people all over the internet.
Inevitably, someone is running with a locale that can’t handle all unicode
characters and you get a traceback reported.

	You redirect output to a file. Python isn’t using the values in
LC_ALL unconditionally to decide what encoding to use. Instead
it is using the encoding set for the terminal you are printing to which is
set to accept different encodings by LC_ALL. If you redirect
to a file, you are no longer printing to the terminal so LC_ALL
won’t have any effect. At this point, python will decide it can’t find an
encoding and fallback to ASCII which will likely lead to
UnicodeError being raised. You can see this in a short script:

#! /usr/bin/python -tt
print u'\ufffd'

And then look at the difference between running it normally and redirecting to a file:

$./test.py
�
$./test.py > t
Traceback (most recent call last):
 File "test.py", line 3, in <module>
 print u'\ufffd'
UnicodeEncodeError: 'ascii' codec can't encode character u'\ufffd' in position 0: ordinal not in range(128)

The short answer to dealing with this is to always use bytes when writing
output. You can do this by explicitly converting to bytes like this:

from kitchen.text.converters import to_bytes
u_string = u'\ufffd'
print to_bytes(u_string)

or you can wrap stdout and stderr with a StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter].
A StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] is convenient in that you can assign it to
encode for sys.stdout [http://docs.python.org/library/sys.html#sys.stdout] or sys.stderr [http://docs.python.org/library/sys.html#sys.stderr] and then have output
automatically converted but it has the drawback of still being able to throw
UnicodeError if the writer can’t encode all possible unicode
codepoints. Kitchen provides an alternate version which can be retrieved with
kitchen.text.converters.getwriter() which will not traceback in its
standard configuration.

Unicode, str, and dict keys

The hash() [http://docs.python.org/library/functions.html#hash] of the ASCII characters is the same for
unicode and byte str. When you use them in dict [http://docs.python.org/library/stdtypes.html#dict]
keys, they evaluate to the same dictionary slot:

>>> u_string = u'a'
>>> b_string = 'a'
>>> hash(u_string), hash(b_string)
(12416037344, 12416037344)
>>> d = {}
>>> d[u_string] = 'unicode'
>>> d[b_string] = 'bytes'
>>> d
{u'a': 'bytes'}

When you deal with key values outside of ASCII, unicode and
byte str evaluate unequally no matter what their character content or
hash value:

>>> u_string = u'ñ'
>>> b_string = u_string.encode('utf-8')
>>> print u_string
ñ
>>> print b_string
ñ
>>> d = {}
>>> d[u_string] = 'unicode'
>>> d[b_string] = 'bytes'
>>> d
{u'\\xf1': 'unicode', '\\xc3\\xb1': 'bytes'}
>>> b_string2 = '\\xf1'
>>> hash(u_string), hash(b_string2)
(30848092528, 30848092528)
>>> d = {}
>>> d[u_string] = 'unicode'
>>> d[b_string2] = 'bytes'
{u'\\xf1': 'unicode', '\\xf1': 'bytes'}

How do you work with this one? Remember rule #1: Keep your unicode
and byte str values separate. That goes for keys in a dictionary
just like anything else.

	For any given dictionary, make sure that all your keys are either
unicode or str. Do not mix the two. If you’re being
given both unicode and str but you don’t need to preserve
separate keys for each, I recommend using to_unicode() or
to_bytes() to convert all keys to one type or the other like this:

>>> from kitchen.text.converters import to_unicode
>>> u_string = u'one'
>>> b_string = 'two'
>>> d = {}
>>> d[to_unicode(u_string)] = 1
>>> d[to_unicode(b_string)] = 2
>>> d
{u'two': 2, u'one': 1}

	These issues also apply to using dicts with tuple keys that contain
a mixture of unicode and str. Once again the best fix
is to standardise on either str or unicode.

	If you absolutely need to store values in a dictionary where the keys could
be either unicode or str you can use
StrictDict which has separate
entries for all unicode and byte str and deals correctly
with any tuple containing mixed unicode and byte
str.

Functions

Unicode and byte str conversion

	
kitchen.text.converters.to_unicode(obj, encoding='utf-8', errors='replace', nonstring=None, non_string=None)

	Convert an object into a unicode string

	Parameters:	
	obj – Object to convert to a unicode string. This should
normally be a byte str

	encoding – What encoding to try converting the byte str as.
Defaults to utf-8

	errors – If errors are found while decoding, perform this action.
Defaults to replace which replaces the invalid bytes with
a character that means the bytes were unable to be decoded. Other
values are the same as the error handling schemes in the codec base
classes [http://docs.python.org/library/codecs.html#codec-base-classes].
For instance strict which raises an exception and ignore which
simply omits the non-decodable characters.

	nonstring – How to treat nonstring values. Possible values are:

	simplerepr:	Attempt to call the object’s “simple representation”
method and return that value. Python-2.3+ has two methods that
try to return a simple representation: object.__unicode__() [http://docs.python.org/reference/datamodel.html#object.__unicode__]
and object.__str__() [http://docs.python.org/reference/datamodel.html#object.__str__]. We first try to get a usable value
from object.__unicode__() [http://docs.python.org/reference/datamodel.html#object.__unicode__]. If that fails we try the same
with object.__str__() [http://docs.python.org/reference/datamodel.html#object.__str__].

	empty:	Return an empty unicode string

	strict:	Raise a TypeError

	passthru:	Return the object unchanged

	repr:	Attempt to return a unicode string of the repr of the
object

Default is simplerepr

	non_string – Deprecated Use nonstring instead

	Raises:	
	TypeError – if nonstring is strict and
a non-basestring object is passed in or if nonstring
is set to an unknown value

	UnicodeDecodeError – if errors is strict and
obj is not decodable using the given encoding

	Returns:	unicode string or the original object depending on the
value of nonstring.

Usually this should be used on a byte str but it can take both
byte str and unicode strings intelligently. Nonstring
objects are handled in different ways depending on the setting of the
nonstring parameter.

The default values of this function are set so as to always return
a unicode string and never raise an error when converting from
a byte str to a unicode string. However, when you do
not pass validly encoded text (or a nonstring object), you may end up with
output that you don’t expect. Be sure you understand the requirements of
your data, not just ignore errors by passing it through this function.

Changed in version 0.2.1a2: Deprecated non_string in favor of nonstring parameter and changed
default value to simplerepr

	
kitchen.text.converters.to_bytes(obj, encoding='utf-8', errors='replace', nonstring=None, non_string=None)

	Convert an object into a byte str

	Parameters:	
	obj – Object to convert to a byte str. This should normally
be a unicode string.

	encoding – Encoding to use to convert the unicode string
into a byte str. Defaults to utf-8.

	errors – If errors are found while encoding, perform this action.
Defaults to replace which replaces the invalid bytes with
a character that means the bytes were unable to be encoded. Other
values are the same as the error handling schemes in the codec base
classes [http://docs.python.org/library/codecs.html#codec-base-classes].
For instance strict which raises an exception and ignore which
simply omits the non-encodable characters.

	nonstring – How to treat nonstring values. Possible values are:

	simplerepr:	Attempt to call the object’s “simple representation”
method and return that value. Python-2.3+ has two methods that
try to return a simple representation: object.__unicode__() [http://docs.python.org/reference/datamodel.html#object.__unicode__]
and object.__str__() [http://docs.python.org/reference/datamodel.html#object.__str__]. We first try to get a usable value
from object.__str__() [http://docs.python.org/reference/datamodel.html#object.__str__]. If that fails we try the same
with object.__unicode__() [http://docs.python.org/reference/datamodel.html#object.__unicode__].

	empty:	Return an empty byte str

	strict:	Raise a TypeError

	passthru:	Return the object unchanged

	repr:	Attempt to return a byte str of the repr() of the
object

Default is simplerepr.

	non_string – Deprecated Use nonstring instead.

	Raises:	
	TypeError – if nonstring is strict and
a non-basestring object is passed in or if nonstring
is set to an unknown value.

	UnicodeEncodeError – if errors is strict and all of the
bytes of obj are unable to be encoded using encoding.

	Returns:	byte str or the original object depending on the value
of nonstring.

Warning

If you pass a byte str into this function the byte
str is returned unmodified. It is not re-encoded with
the specified encoding. The easiest way to achieve that is:

to_bytes(to_unicode(text), encoding='utf-8')

The initial to_unicode() call will ensure text is
a unicode string. Then, to_bytes() will turn that into
a byte str with the specified encoding.

Usually, this should be used on a unicode string but it can take
either a byte str or a unicode string intelligently.
Nonstring objects are handled in different ways depending on the setting
of the nonstring parameter.

The default values of this function are set so as to always return a byte
str and never raise an error when converting from unicode to
bytes. However, when you do not pass an encoding that can validly encode
the object (or a non-string object), you may end up with output that you
don’t expect. Be sure you understand the requirements of your data, not
just ignore errors by passing it through this function.

Changed in version 0.2.1a2: Deprecated non_string in favor of nonstring parameter
and changed default value to simplerepr

	
kitchen.text.converters.getwriter(encoding)

	Return a codecs.StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] that resists tracing back.

	Parameters:	encoding – Encoding to use for transforming unicode strings
into byte str.

	Return type:	codecs.StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter]

	Returns:	StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] that you can instantiate to wrap output
streams to automatically translate unicode strings into encoding.

This is a reimplemetation of codecs.getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter] that returns
a StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] that resists issuing tracebacks. The
StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] that is returned uses
kitchen.text.converters.to_bytes() to convert unicode
strings into byte str. The departures from
codecs.getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter] are:

	The StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] that is returned will take byte
str as well as unicode strings. Any byte
str will be passed through unmodified.

	The default error handler for unknown bytes is to replace the bytes
with the unknown character (? in most ascii-based encodings, �
in the utf encodings) whereas codecs.getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter] defaults to
strict. Like codecs.StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter], the returned
StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] can have its error handler changed in
code by setting stream.errors = 'new_handler_name'

Example usage:

$ LC_ALL=C python
>>> import sys
>>> from kitchen.text.converters import getwriter
>>> UTF8Writer = getwriter('utf-8')
>>> unwrapped_stdout = sys.stdout
>>> sys.stdout = UTF8Writer(unwrapped_stdout)
>>> print 'caf\xc3\xa9'
café
>>> print u'caf\xe9'
café
>>> ASCIIWriter = getwriter('ascii')
>>> sys.stdout = ASCIIWriter(unwrapped_stdout)
>>> print 'caf\xc3\xa9'
café
>>> print u'caf\xe9'
caf?

See also

API docs for codecs.StreamWriter [http://docs.python.org/library/codecs.html#codecs.StreamWriter] and codecs.getwriter() [http://docs.python.org/library/codecs.html#codecs.getwriter]
and Print Fails [http://wiki.python.org/moin/PrintFails] on the
python wiki.

New in version kitchen: 0.2a2, API: kitchen.text 1.1.0

	
kitchen.text.converters.to_str(obj)

	Deprecated

This function converts something to a byte str if it isn’t one.
It’s used to call str() [http://docs.python.org/library/functions.html#str] or unicode() [http://docs.python.org/library/functions.html#unicode] on the object to get its
simple representation without danger of getting a UnicodeError.
You should be using to_unicode() or to_bytes() explicitly
instead.

If you need unicode strings:

to_unicode(obj, nonstring='simplerepr')

If you need byte str:

to_bytes(obj, nonstring='simplerepr')

	
kitchen.text.converters.to_utf8(obj, errors='replace', non_string='passthru')

	Deprecated

Convert unicode to an encoded utf-8 byte str.
You should be using to_bytes() instead:

to_bytes(obj, encoding='utf-8', non_string='passthru')

Transformation to XML

	
kitchen.text.converters.unicode_to_xml(string, encoding='utf-8', attrib=False, control_chars='replace')

	Take a unicode string and turn it into a byte str
suitable for xml

	Parameters:	
	string – unicode string to encode into an XML compatible byte
str

	encoding – encoding to use for the returned byte str.
Default is to encode to UTF-8. If some of the characters in
string are not encodable in this encoding, the unknown
characters will be entered into the output string using xml character
references.

	attrib – If True [http://docs.python.org/library/constants.html#True], quote the string for use in an xml
attribute. If False [http://docs.python.org/library/constants.html#False] (default), quote for use in an xml text
field.

	control_chars – control characters are not allowed in XML
documents. When we encounter those we need to know what to do. Valid
options are:

	replace:	(default) Replace the control characters with ?

	ignore:	Remove the characters altogether from the output

	strict:	Raise an XmlEncodeError when
we encounter a control character

	Raises:	
	kitchen.text.exceptions.XmlEncodeError – If control_chars
is set to strict and the string to be made suitable for output to
xml contains control characters or if string is not
a unicode string then we raise this exception.

	ValueError – If control_chars is set to something other than
replace, ignore, or strict.

	Return type:	byte str

	Returns:	representation of the unicode string as a valid XML
byte str

XML files consist mainly of text encoded using a particular charset. XML
also denies the use of certain bytes in the encoded text (example: ASCII
Null). There are also special characters that must be escaped if they
are present in the input (example: <). This function takes care of
all of those issues for you.

There are a few different ways to use this function depending on your
needs. The simplest invocation is like this:

unicode_to_xml(u'String with non-ASCII characters: <"á と">')

This will return the following to you, encoded in utf-8:

'String with non-ASCII characters: <"á と">'

Pretty straightforward. Now, what if you need to encode your document in
something other than utf-8? For instance, latin-1? Let’s
see:

unicode_to_xml(u'String with non-ASCII characters: <"á と">', encoding='latin-1')
'String with non-ASCII characters: <"á と">'

Because the と character is not available in the latin-1 charset,
it is replaced with と in our output. This is an xml character
reference which represents the character at unicode codepoint 12392, the
と character.

When you want to reverse this, use xml_to_unicode() which will turn
a byte str into a unicode string and replace the xml
character references with the unicode characters.

XML also has the quirk of not allowing control characters in its
output. The control_chars parameter allows us to specify what to
do with those. For use cases that don’t need absolute character by
character fidelity (example: holding strings that will just be used for
display in a GUI app later), the default value of replace works well:

unicode_to_xml(u'String with disallowed control chars: \u0000\u0007')
'String with disallowed control chars: ??'

If you do need to be able to reproduce all of the characters at a later
date (examples: if the string is a key value in a database or a path on a
filesystem) you have many choices. Here are a few that rely on utf-7,
a verbose encoding that encodes control characters (as well as
non-ASCII unicode values) to characters from within the
ASCII printable characters. The good thing about doing this is
that the code is pretty simple. You just need to use utf-7 both when
encoding the field for xml and when decoding it for use in your python
program:

unicode_to_xml(u'String with unicode: と and control char: \u0007', encoding='utf7')
'String with unicode: +MGg and control char: +AAc-'
[...]
xml_to_unicode('String with unicode: +MGg and control char: +AAc-', encoding='utf7')
u'String with unicode: と and control char: \u0007'

As you can see, the utf-7 encoding will transform even characters that
would be representable in utf-8. This can be a drawback if you
want unicode characters in the file to be readable without being decoded
first. You can work around this with increased complexity in your
application code:

encoding = 'utf-8'
u_string = u'String with unicode: と and control char: \u0007'
try:
 # First attempt to encode to utf8
 data = unicode_to_xml(u_string, encoding=encoding, errors='strict')
except XmlEncodeError:
 # Fallback to utf-7
 encoding = 'utf-7'
 data = unicode_to_xml(u_string, encoding=encoding, errors='strict')
write_tag('<mytag encoding=%s>%s</mytag>' % (encoding, data))
[...]
encoding = tag.attributes.encoding
u_string = xml_to_unicode(u_string, encoding=encoding)

Using code similar to that, you can have some fields encoded using your
default encoding and fallback to utf-7 if there are control
characters present.

Note

If your goal is to preserve the control characters you cannot
save the entire file as utf-7 and set the xml encoding parameter
to utf-7 if your goal is to preserve the control
characters. Because XML doesn’t allow control characters,
you have to encode those separate from any encoding work that the XML
parser itself knows about.

See also

	bytes_to_xml()

	if you’re dealing with bytes that are non-text or of an unknown
encoding that you must preserve on a byte for byte level.

	guess_encoding_to_xml()

	if you’re dealing with strings in unknown encodings that you don’t
need to save with char-for-char fidelity.

	
kitchen.text.converters.xml_to_unicode(byte_string, encoding='utf-8', errors='replace')

	Transform a byte str from an xml file into a unicode
string

	Parameters:	
	byte_string – byte str to decode

	encoding – encoding that the byte str is in

	errors – What to do if not every character is valid in
encoding. See the to_unicode() documentation for legal
values.

	Return type:	unicode string

	Returns:	string decoded from byte_string

This function attempts to reverse what unicode_to_xml() does. It
takes a byte str (presumably read in from an xml file) and
expands all the html entities into unicode characters and decodes the byte
str into a unicode string. One thing it cannot do is
restore any control characters that were removed prior to
inserting into the file. If you need to keep such characters you need to
use xml_to_bytes() and bytes_to_xml() or use on of the
strategies documented in unicode_to_xml() instead.

	
kitchen.text.converters.byte_string_to_xml(byte_string, input_encoding='utf-8', errors='replace', output_encoding='utf-8', attrib=False, control_chars='replace')

	Make sure a byte str is validly encoded for xml output

	Parameters:	
	byte_string – Byte str to turn into valid xml output

	input_encoding – Encoding of byte_string. Default utf-8

	errors – How to handle errors encountered while decoding the
byte_string into unicode at the beginning of the
process. Values are:

	replace:	(default) Replace the invalid bytes with a ?

	ignore:	Remove the characters altogether from the output

	strict:	Raise an UnicodeDecodeError when we encounter
a non-decodable character

	output_encoding – Encoding for the xml file that this string will go
into. Default is utf-8. If all the characters in
byte_string are not encodable in this encoding, the unknown
characters will be entered into the output string using xml character
references.

	attrib – If True [http://docs.python.org/library/constants.html#True], quote the string for use in an xml
attribute. If False [http://docs.python.org/library/constants.html#False] (default), quote for use in an xml text
field.

	control_chars – XML does not allow control characters. When
we encounter those we need to know what to do. Valid options are:

	replace:	(default) Replace the control characters with ?

	ignore:	Remove the characters altogether from the output

	strict:	Raise an error when we encounter a control character

	Raises:	
	XmlEncodeError – If control_chars is set to strict and
the string to be made suitable for output to xml contains
control characters then we raise this exception.

	UnicodeDecodeError – If errors is set to strict and the
byte_string contains bytes that are not decodable using
input_encoding, this error is raised

	Return type:	byte str

	Returns:	representation of the byte str in the output encoding with
any bytes that aren’t available in xml taken care of.

Use this when you have a byte str representing text that you need
to make suitable for output to xml. There are several cases where this
is the case. For instance, if you need to transform some strings encoded
in latin-1 to utf-8 for output:

utf8_string = byte_string_to_xml(latin1_string, input_encoding='latin-1')

If you already have strings in the proper encoding you may still want to
use this function to remove control characters:

cleaned_string = byte_string_to_xml(string, input_encoding='utf-8', output_encoding='utf-8')

See also

	unicode_to_xml()

	for other ideas on using this function

	
kitchen.text.converters.xml_to_byte_string(byte_string, input_encoding='utf-8', errors='replace', output_encoding='utf-8')

	Transform a byte str from an xml file into unicode
string

	Parameters:	
	byte_string – byte str to decode

	input_encoding – encoding that the byte str is in

	errors – What to do if not every character is valid in
encoding. See the to_unicode() docstring for legal
values.

	output_encoding – Encoding for the output byte str

	Returns:	unicode string decoded from byte_string

This function attempts to reverse what unicode_to_xml() does. It
takes a byte str (presumably read in from an xml file) and
expands all the html entities into unicode characters and decodes the
byte str into a unicode string. One thing it cannot do
is restore any control characters that were removed prior to
inserting into the file. If you need to keep such characters you need to
use xml_to_bytes() and bytes_to_xml() or use one of the
strategies documented in unicode_to_xml() instead.

	
kitchen.text.converters.bytes_to_xml(byte_string, *args, **kwargs)

	Return a byte str encoded so it is valid inside of any xml
file

	Parameters:	
	byte_string – byte str to transform

	**kwargs (*args,) – extra arguments to this function are passed on to
the function actually implementing the encoding. You can use this to
tweak the output in some cases but, as a general rule, you shouldn’t
because the underlying encoding function is not guaranteed to remain
the same.

	Return type:	byte str consisting of all ASCII characters

	Returns:	byte str representation of the input. This will be encoded
using base64.

This function is made especially to put binary information into xml
documents.

This function is intended for encoding things that must be preserved
byte-for-byte. If you want to encode a byte string that’s text and don’t
mind losing the actual bytes you probably want to try byte_string_to_xml()
or guess_encoding_to_xml() instead.

Note

Although the current implementation uses base64.b64encode() [http://docs.python.org/library/base64.html#base64.b64encode] and
there’s no plans to change it, that isn’t guaranteed. If you want to
make sure that you can encode and decode these messages it’s best to
use xml_to_bytes() if you use this function to encode.

	
kitchen.text.converters.xml_to_bytes(byte_string, *args, **kwargs)

	Decode a string encoded using bytes_to_xml()

	Parameters:	
	byte_string – byte str to transform. This should be a base64
encoded sequence of bytes originally generated by bytes_to_xml().

	**kwargs (*args,) – extra arguments to this function are passed on to
the function actually implementing the encoding. You can use this to
tweak the output in some cases but, as a general rule, you shouldn’t
because the underlying encoding function is not guaranteed to remain
the same.

	Return type:	byte str

	Returns:	byte str that’s the decoded input

If you’ve got fields in an xml document that were encoded with
bytes_to_xml() then you want to use this function to undecode them.
It converts a base64 encoded string into a byte str.

Note

Although the current implementation uses base64.b64decode() [http://docs.python.org/library/base64.html#base64.b64decode] and
there’s no plans to change it, that isn’t guaranteed. If you want to
make sure that you can encode and decode these messages it’s best to
use bytes_to_xml() if you use this function to decode.

	
kitchen.text.converters.guess_encoding_to_xml(string, output_encoding='utf-8', attrib=False, control_chars='replace')

	Return a byte str suitable for inclusion in xml

	Parameters:	
	string – unicode or byte str to be transformed into
a byte str suitable for inclusion in xml. If string is
a byte str we attempt to guess the encoding. If we cannot guess,
we fallback to latin-1.

	output_encoding – Output encoding for the byte str. This
should match the encoding of your xml file.

	attrib – If True [http://docs.python.org/library/constants.html#True], escape the item for use in an xml
attribute. If False [http://docs.python.org/library/constants.html#False] (default) escape the item for use in
a text node.

	Returns:	utf-8 encoded byte str

	
kitchen.text.converters.to_xml(string, encoding='utf-8', attrib=False, control_chars='ignore')

	Deprecated: Use guess_encoding_to_xml() instead

Working with exception messages

	
kitchen.text.converters.EXCEPTION_CONVERTERS = (<function <lambda> at 0x7ffb08925c08>, <function <lambda> at 0x7ffb08925c80>)

	
	Tuple of functions to try to use to convert an exception into a string

	representation. Its main use is to extract a string (unicode or
str) from an exception object in exception_to_unicode() and
exception_to_bytes(). The functions here will try the exception’s
args[0] and the exception itself (roughly equivalent to
str(exception)) to extract the message. This is only a default and can
be easily overridden when calling those functions. There are several
reasons you might wish to do that. If you have exceptions where the best
string representing the exception is not returned by the default
functions, you can add another function to extract from a different
field:

from kitchen.text.converters import (EXCEPTION_CONVERTERS,
 exception_to_unicode)

class MyError(Exception):
 def __init__(self, message):
 self.value = message

c = [lambda e: e.value]
c.extend(EXCEPTION_CONVERTERS)
try:
 raise MyError('An Exception message')
except MyError, e:
 print exception_to_unicode(e, converters=c)

Another reason would be if you’re converting to a byte str and
you know the str needs to be a non-utf-8 encoding.
exception_to_bytes() defaults to utf-8 but if you convert
into a byte str explicitly using a converter then you can choose
a different encoding:

from kitchen.text.converters import (EXCEPTION_CONVERTERS,
 exception_to_bytes, to_bytes)
c = [lambda e: to_bytes(e.args[0], encoding='euc_jp'),
 lambda e: to_bytes(e, encoding='euc_jp')]
c.extend(EXCEPTION_CONVERTERS)
try:
 do_something()
except Exception, e:
 log = open('logfile.euc_jp', 'a')
 log.write('%s

	‘ % exception_to_bytes(e, converters=c)

	
log.close()

Each function in this list should take the exception as its sole argument
and return a string containing the message representing the exception.
The functions may return the message as a :byte class:str,
a unicode string, or even an object if you trust the object to
return a decent string representation. The exception_to_unicode()
and exception_to_bytes() functions will make sure to convert the
string to the proper type before returning.

New in version 0.2.2.

	
kitchen.text.converters.BYTE_EXCEPTION_CONVERTERS = (<function <lambda> at 0x7ffb08925cf8>, <function to_bytes at 0x7ffb08925a28>)

	Deprecated: Use EXCEPTION_CONVERTERS instead.

Tuple of functions to try to use to convert an exception into a string
representation. This tuple is similar to the one in
EXCEPTION_CONVERTERS but it’s used with exception_to_bytes()
instead. Ideally, these functions should do their best to return the data
as a byte str but the results will be run through
to_bytes() before being returned.

New in version 0.2.2.

Changed in version 1.0.1: Deprecated as simplifications allow EXCEPTION_CONVERTERS to
perform the same function.

	
kitchen.text.converters.exception_to_unicode(exc, converters=(<function <lambda> at 0x7ffb08925c08>, <function <lambda> at 0x7ffb08925c80>))

	Convert an exception object into a unicode representation

	Parameters:	
	exc – Exception object to convert

	converters – List of functions to use to convert the exception into
a string. See EXCEPTION_CONVERTERS for the default value and
an example of adding other converters to the defaults. The functions
in the list are tried one at a time to see if they can extract
a string from the exception. The first one to do so without raising
an exception is used.

	Returns:	unicode string representation of the exception. The
value extracted by the converters will be converted into
unicode before being returned using the utf-8
encoding. If you know you need to use an alternate encoding add
a function that does that to the list of functions in
converters)

New in version 0.2.2.

	
kitchen.text.converters.exception_to_bytes(exc, converters=(<function <lambda> at 0x7ffb08925c08>, <function <lambda> at 0x7ffb08925c80>))

	Convert an exception object into a str representation

	Parameters:	
	exc – Exception object to convert

	converters – List of functions to use to convert the exception into
a string. See EXCEPTION_CONVERTERS for the default value and
an example of adding other converters to the defaults. The functions
in the list are tried one at a time to see if they can extract
a string from the exception. The first one to do so without raising
an exception is used.

	Returns:	byte str representation of the exception. The value
extracted by the converters will be converted into
str before being returned using the utf-8 encoding.
If you know you need to use an alternate encoding add a function that
does that to the list of functions in converters)

New in version 0.2.2.

Changed in version 1.0.1: Code simplification allowed us to switch to using
EXCEPTION_CONVERTERS as the default value of
converters.

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

 	Kitchen.text: unicode and utf8 and xml oh my!

Format Text for Display

Functions related to displaying unicode text. Unicode characters don’t all
have the same width so we need helper functions for displaying them.

New in version 0.2: kitchen.display API 1.0.0

	
kitchen.text.display.textual_width(msg, control_chars='guess', encoding='utf-8', errors='replace')

	Get the textual width of a string

	Parameters:	
	msg – unicode string or byte str to get the width of

	control_chars – specify how to deal with control characters.
Possible values are:

	guess:	(default) will take a guess for control character
widths. Most codes will return zero width. backspace,
delete, and clear delete return -1. escape currently
returns -1 as well but this is not guaranteed as it’s not always
correct

	strict:	will raise kitchen.text.exceptions.ControlCharError
if a control character is encountered

	encoding – If we are given a byte str this is used to
decode it into unicode string. Any characters that are not
decodable in this encoding will get a value dependent on the
errors parameter.

	errors – How to treat errors encoding the byte str to
unicode string. Legal values are the same as for
kitchen.text.converters.to_unicode(). The default value of
replace will cause undecodable byte sequences to have a width of
one. ignore will have a width of zero.

	Raises ControlCharError:

		if msg contains a control
character and control_chars is strict.

	Returns:	Textual width of the msg. This is the amount of
space that the string will consume on a monospace display. It’s
measured in the number of cell positions or columns it will take up on
a monospace display. This is not the number of glyphs that are in
the string.

Note

This function can be wrong sometimes because Unicode does not specify
a strict width value for all of the code points. In
particular, we’ve found that some Tamil characters take up to four
character cells but we return a lesser amount.

	
kitchen.text.display.textual_width_chop(msg, chop, encoding='utf-8', errors='replace')

	Given a string, return it chopped to a given textual width

	Parameters:	
	msg – unicode string or byte str to chop

	chop – Chop msg if it exceeds this textual width

	encoding – If we are given a byte str, this is used to
decode it into a unicode string. Any characters that are not
decodable in this encoding will be assigned a width of one.

	errors – How to treat errors encoding the byte str to
unicode. Legal values are the same as for
kitchen.text.converters.to_unicode()

	Return type:	unicode string

	Returns:	unicode string of the msg chopped at the given
textual width

This is what you want to use instead of %.*s, as it does the “right”
thing with regard to UTF-8 sequences, control characters,
and characters that take more than one cell position. Eg:

>>> # Wrong: only displays 8 characters because it is operating on bytes
>>> print "%.*s" % (10, 'café ñunru!')
café ñun
>>> # Properly operates on graphemes
>>> '%s' % (textual_width_chop('café ñunru!', 10))
café ñunru
>>> # takes too many columns because the kanji need two cell positions
>>> print '1234567890\n%.*s' % (10, u'一二三四五六七八九十')
1234567890
一二三四五六七八九十
>>> # Properly chops at 10 columns
>>> print '1234567890\n%s' % (textual_width_chop(u'一二三四五六七八九十', 10))
1234567890
一二三四五

	
kitchen.text.display.textual_width_fill(msg, fill, chop=None, left=True, prefix='', suffix='')

	Expand a unicode string to a specified textual width
or chop to same

	Parameters:	
	msg – unicode string to format

	fill – pad string until the textual width of the string is
this length

	chop – before doing anything else, chop the string to this length.
Default: Don’t chop the string at all

	left – If True [http://docs.python.org/library/constants.html#True] (default) left justify the string and put the
padding on the right. If False [http://docs.python.org/library/constants.html#False], pad on the left side.

	prefix – Attach this string before the field we’re filling

	suffix – Append this string to the end of the field we’re filling

	Return type:	unicode string

	Returns:	msg formatted to fill the specified width. If no
chop is specified, the string could exceed the fill length
when completed. If prefix or suffix are printable
characters, the string could be longer than the fill width.

Note

prefix and suffix should be used for “invisible”
characters like highlighting, color changing escape codes, etc. The
fill characters are appended outside of any prefix or
suffix elements. This allows you to only highlight
msg inside of the field you’re filling.

Warning

msg, prefix, and suffix should all be
representable as unicode characters. In particular, any escape
sequences in prefix and suffix need to be convertible
to unicode. If you need to use byte sequences here rather
than unicode characters, use
byte_string_textual_width_fill() instead.

This function expands a string to fill a field of a particular
textual width. Use it instead of %*.*s, as it does the
“right” thing with regard to UTF-8 sequences, control
characters, and characters that take more than one cell position in
a display. Example usage:

>>> msg = u'一二三四五六七八九十'
>>> # Wrong: This uses 10 characters instead of 10 cells:
>>> u":%-*.*s:" % (10, 10, msg[:9])
:一二三四五六七八九 :
>>> # This uses 10 cells like we really want:
>>> u":%s:" % (textual_width_fill(msg[:9], 10, 10))
:一二三四五:

>>> # Wrong: Right aligned in the field, but too many cells
>>> u"%20.10s" % (msg)
 一二三四五六七八九十
>>> # Correct: Right aligned with proper number of cells
>>> u"%s" % (textual_width_fill(msg, 20, 10, left=False))
 一二三四五

>>> # Wrong: Adding some escape characters to highlight the line but too many cells
>>> u"%s%20.10s%s" % (prefix, msg, suffix)
u'

 Miscellaneous functions for manipulating text

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

 	Kitchen.text: unicode and utf8 and xml oh my!

Miscellaneous functions for manipulating text

Collection of text functions that don’t fit in another category.

Changed in version kitchen: 1.2.0, API: kitchen.text 2.2.0
Added isbasestring(),
isbytestring(), and
isunicodestring() to help tell which string type
is which on python2 and python3

	
kitchen.text.misc.byte_string_valid_encoding(byte_string, encoding='utf-8')

	Detect if a byte str is valid in a specific encoding

	Parameters:	
	byte_string – Byte str to test for bytes not valid in this
encoding

	encoding – encoding to test against. Defaults to UTF-8.

	Returns:	True [http://docs.python.org/library/constants.html#True] if there are no invalid UTF-8 characters.
False [http://docs.python.org/library/constants.html#False] if an invalid character is detected.

Note

This function checks whether the byte str is valid in the
specified encoding. It does not detect whether the byte
str actually was encoded in that encoding. If you want that
sort of functionality, you probably want to use
guess_encoding() instead.

	
kitchen.text.misc.byte_string_valid_xml(byte_string, encoding='utf-8')

	Check that a byte str would be valid in xml

	Parameters:	
	byte_string – Byte str to check

	encoding – Encoding of the xml file. Default: UTF-8

	Returns:	True [http://docs.python.org/library/constants.html#True] if the string is valid. False [http://docs.python.org/library/constants.html#False] if it would
be invalid in the xml file

In some cases you’ll have a whole bunch of byte strings and rather than
transforming them to unicode and back to byte str for
output to xml, you will just want to make sure they work with the xml file
you’re constructing. This function will help you do that. Example:

ARRAY_OF_MOSTLY_UTF8_STRINGS = [...]
processed_array = []
for string in ARRAY_OF_MOSTLY_UTF8_STRINGS:
 if byte_string_valid_xml(string, 'utf-8'):
 processed_array.append(string)
 else:
 processed_array.append(guess_bytes_to_xml(string, encoding='utf-8'))
output_xml(processed_array)

	
kitchen.text.misc.guess_encoding(byte_string, disable_chardet=False)

	Try to guess the encoding of a byte str

	Parameters:	
	byte_string – byte str to guess the encoding of

	disable_chardet – If this is True, we never attempt to use
chardet to guess the encoding. This is useful if you need to
have reproducibility whether chardet is installed or not.
Default: False [http://docs.python.org/library/constants.html#False].

	Raises TypeError:

		if byte_string is not a byte str type

	Returns:	string containing a guess at the encoding of
byte_string. This is appropriate to pass as the encoding
argument when encoding and decoding unicode strings.

We start by attempting to decode the byte str as UTF-8.
If this succeeds we tell the world it’s UTF-8 text. If it doesn’t
and chardet is installed on the system and disable_chardet
is False this function will use it to try detecting the encoding of
byte_string. If it is not installed or chardet cannot
determine the encoding with a high enough confidence then we rather
arbitrarily claim that it is latin-1. Since latin-1 will encode
to every byte, decoding from latin-1 to unicode will not
cause UnicodeErrors although the output might be mangled.

	
kitchen.text.misc.html_entities_unescape(string)

	Substitute unicode characters for HTML entities

	Parameters:	string – unicode string to substitute out html entities

	Raises TypeError:

		if something other than a unicode string is
given

	Return type:	unicode string

	Returns:	The plain text without html entities

	
kitchen.text.misc.isbasestring(obj)

	Determine if obj is a byte str or unicode string

In python2 this is eqiuvalent to isinstance(obj, basestring). In python3
it checks whether the object is an instance of str, bytes, or bytearray.
This is an aid to porting code that needed to test whether an object was
derived from basestring in python2 (commonly used in unicode-bytes
conversion functions)

	Parameters:	obj – Object to test

	Returns:	True if the object is a basestring. Otherwise False.

New in version Kitchen:: 1.2.0, API kitchen.text 2.2.0

	
kitchen.text.misc.isbytestring(obj)

	Determine if obj is a byte str

In python2 this is equivalent to isinstance(obj, str). In python3 it
checks whether the object is an instance of bytes or bytearray.

	Parameters:	obj – Object to test

	Returns:	True if the object is a byte str. Otherwise, False.

New in version Kitchen:: 1.2.0, API kitchen.text 2.2.0

	
kitchen.text.misc.isunicodestring(obj)

	Determine if obj is a unicode string

In python2 this is equivalent to isinstance(obj, unicode). In python3 it
checks whether the object is an instance of str.

	Parameters:	obj – Object to test

	Returns:	True if the object is a unicode string. Otherwise, False.

New in version Kitchen:: 1.2.0, API kitchen.text 2.2.0

	
kitchen.text.misc.process_control_chars(string, strategy='replace')

	Look for and transform control characters in a string

	Parameters:	
	string – string to search for and transform control characters
within

	strategy – XML does not allow ASCII control
characters. When we encounter those we need to know what to do.
Valid options are:

	replace:	(default) Replace the control characters
with "?"

	ignore:	Remove the characters altogether from the output

	strict:	Raise a ControlCharError when
we encounter a control character

	Raises:	
	TypeError – if string is not a unicode string.

	ValueError – if the strategy is not one of replace, ignore, or
strict.

	kitchen.text.exceptions.ControlCharError – if the strategy is
strict and a control character is present in the
string

	Returns:	unicode string with no control characters in
it.

Changed in version kitchen: 1.2.0, API: kitchen.text 2.2.0
Strip out the C1 control characters in addition to the C0 control
characters.

	
kitchen.text.misc.str_eq(str1, str2, encoding='utf-8', errors='replace')

	Compare two strings, converting to byte str if one is
unicode

	Parameters:	
	str1 – First string to compare

	str2 – Second string to compare

	encoding – If we need to convert one string into a byte str
to compare, the encoding to use. Default is utf-8.

	errors – What to do if we encounter errors when encoding the string.
See the kitchen.text.converters.to_bytes() documentation for
possible values. The default is replace.

This function prevents UnicodeError (python-2.4 or less) and
UnicodeWarning (python 2.5 and higher) when we compare
a unicode string to a byte str. The errors normally
arise because the conversion is done to ASCII. This function
lets you convert to utf-8 or another encoding instead.

Note

When we need to convert one of the strings from unicode in
order to compare them we convert the unicode string into
a byte str. That means that strings can compare differently
if you use different encodings for each.

Note that str1 == str2 is faster than this function if you can accept
the following limitations:

	Limited to python-2.5+ (otherwise a UnicodeDecodeError may be
thrown)

	Will generate a UnicodeWarning if non-ASCII byte
str is compared to unicode string.

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 UTF-8

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

 	Kitchen.text: unicode and utf8 and xml oh my!

UTF-8

Functions for operating on byte str encoded as UTF-8

Note

In many cases, it is better to convert to unicode, operate on the
strings, then convert back to UTF-8. unicode type can
handle many of these functions itself. For those that it doesn’t
(removing control characters from length calculations, for instance) the
code to do so with a unicode type is often simpler.

Warning

All of the functions in this module are deprecated. Most of them have
been replaced with functions that operate on unicode values in
kitchen.text.display. kitchen.text.utf8.utf8_valid() has
been replaced with a function in kitchen.text.misc.

	
kitchen.text.utf8.utf8_text_fill(text, *args, **kwargs)

	Deprecated Similar to textwrap.fill() [http://docs.python.org/library/textwrap.html#textwrap.fill] but understands
utf-8 strings and doesn’t screw up lists/blocks/etc.

Use kitchen.text.display.fill() instead.

	
kitchen.text.utf8.utf8_text_wrap(text, width=70, initial_indent='', subsequent_indent='')

	Deprecated Similar to textwrap.wrap() [http://docs.python.org/library/textwrap.html#textwrap.wrap] but understands
utf-8 data and doesn’t screw up lists/blocks/etc

Use kitchen.text.display.wrap() instead

	
kitchen.text.utf8.utf8_valid(msg)

	Deprecated Detect if a string is valid utf-8

Use kitchen.text.misc.byte_string_valid_encoding() instead.

	
kitchen.text.utf8.utf8_width(msg)

	Deprecated Get the textual width of a utf-8 string

Use kitchen.text.display.textual_width() instead.

	
kitchen.text.utf8.utf8_width_chop(msg, chop=None)

	Deprecated Return a string chopped to a given textual width

Use textual_width_chop() and
textual_width() instead:

>>> msg = 'く ku ら ra と to み mi'
>>> # Old way:
>>> utf8_width_chop(msg, 5)
(5, 'く ku')
>>> # New way
>>> from kitchen.text.converters import to_bytes
>>> from kitchen.text.display import textual_width, textual_width_chop
>>> (textual_width(msg), to_bytes(textual_width_chop(msg, 5)))
(5, 'く ku')

	
kitchen.text.utf8.utf8_width_fill(msg, fill, chop=None, left=True, prefix='', suffix='')

	Deprecated Pad a utf-8 string to fill a specified width

Use byte_string_textual_width_fill() instead

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Kitchen.collections

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

Kitchen.collections

StrictDict

kitchen.collections.StrictDict provides a dictionary that treats
str and unicode as distinct key values.

	
class kitchen.collections.strictdict.StrictDict

	Map class that considers unicode and str different keys

Ordinarily when you are dealing with a dict [http://docs.python.org/library/stdtypes.html#dict] keyed on strings you
want to have keys that have the same characters end up in the same bucket
even if one key is unicode and the other is a byte str.
The normal dict [http://docs.python.org/library/stdtypes.html#dict] type does this for ASCII characters (but
not for anything outside of the ASCII range.)

Sometimes, however, you want to keep the two string classes strictly
separate, for instance, if you’re creating a single table that can map
from unicode characters to str characters and vice
versa. This class will help you do that by making all unicode
keys evaluate to a different key than all str keys.

See also

	dict [http://docs.python.org/library/stdtypes.html#dict]

	for documentation on this class’s methods. This class implements
all the standard dict [http://docs.python.org/library/stdtypes.html#dict] methods. Its treatment of
unicode and str keys as separate is the only
difference.

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Kitchen.iterutils Module

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

Kitchen.iterutils Module

Functions to manipulate iterables

New in version Kitchen:: 0.2.1a1

Module author: Toshio Kuratomi <toshio@fedoraproject.org>

Module author: Luke Macken <lmacken@redhat.com>

	
kitchen.iterutils.isiterable(obj, include_string=False)

	Check whether an object is an iterable

	Parameters:	
	obj – Object to test whether it is an iterable

	include_string – If True [http://docs.python.org/library/constants.html#True] and obj is a byte
str or unicode string this function will return
True [http://docs.python.org/library/constants.html#True]. If set to False [http://docs.python.org/library/constants.html#False], byte str and
unicode strings will cause this function to return
False [http://docs.python.org/library/constants.html#False]. Default False [http://docs.python.org/library/constants.html#False].

	Returns:	True [http://docs.python.org/library/constants.html#True] if obj is iterable, otherwise
False [http://docs.python.org/library/constants.html#False].

	
kitchen.iterutils.iterate(obj, include_string=False)

	Generator that can be used to iterate over anything

	Parameters:	
	obj – The object to iterate over

	include_string – if True [http://docs.python.org/library/constants.html#True], treat strings as iterables.
Otherwise treat them as a single scalar value. Default False [http://docs.python.org/library/constants.html#False]

This function will create an iterator out of any scalar or iterable. It
is useful for making a value given to you an iterable before operating on it.
Iterables have their items returned. scalars are transformed into iterables.
A string is treated as a scalar value unless the include_string
parameter is set to True [http://docs.python.org/library/constants.html#True]. Example usage:

>>> list(iterate(None))
[None]
>>> list(iterate([None]))
[None]
>>> list(iterate([1, 2, 3]))
[1, 2, 3]
>>> list(iterate(set([1, 2, 3])))
[1, 2, 3]
>>> list(iterate(dict(a='1', b='2')))
['a', 'b']
>>> list(iterate(1))
[1]
>>> list(iterate(iter([1, 2, 3])))
[1, 2, 3]
>>> list(iterate('abc'))
['abc']
>>> list(iterate('abc', include_string=True))
['a', 'b', 'c']

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Helpers for versioning software

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

Helpers for versioning software

PEP-386 compliant versioning

PEP 386 [http://www.python.org/dev/peps/pep-0386] defines a standard format for version strings. This module
contains a function for creating strings in that format.

	
kitchen.versioning.version_tuple_to_string(version_info)

	Return a PEP 386 [http://www.python.org/dev/peps/pep-0386] version string from a PEP 386 [http://www.python.org/dev/peps/pep-0386] style version tuple

	Parameters:	version_info – Nested set of tuples that describes the version. See
below for an example.

	Returns:	a version string

This function implements just enough of PEP 386 [http://www.python.org/dev/peps/pep-0386] to satisfy our needs.
PEP 386 [http://www.python.org/dev/peps/pep-0386] defines a standard format for version strings and refers to
a function that will be merged into the python standard library [http://docs.python.org/library] that transforms a tuple
of version information into a standard version string. This function is
an implementation of that function. Once that function becomes available
in the python standard library [http://docs.python.org/library] we will start using it and deprecate this function.

version_info takes the form that PEP 386 [http://www.python.org/dev/peps/pep-0386]‘s
NormalizedVersion.from_parts() uses:

((Major, Minor, [Micros]), [(Alpha/Beta/rc marker, version)],
 [(post/dev marker, version)])

Ex: ((1, 0, 0), ('a', 2), ('dev', 3456))

It generates a PEP 386 [http://www.python.org/dev/peps/pep-0386] compliant version string:

N.N[.N]+[{a|b|c|rc}N[.N]+][.postN][.devN]

Ex: 1.0.0a2.dev3456

Warning

This function does next to no error checking. It’s up to the
person defining the version tuple to make sure that the values make
sense. If the PEP 386 [http://www.python.org/dev/peps/pep-0386] compliant version parser doesn’t get
released soon we’ll look at making this function check that the
version tuple makes sense before transforming it into a string.

It’s recommended that you use this function to keep
a __version_info__ tuple and __version__ string in your
modules. Why do we need both a tuple and a string? The string is often
useful for putting into human readable locations like release
announcements, version strings in tarballs, etc. Meanwhile the tuple is
very easy for a computer to compare. For example, kitchen sets up its
version information like this:

from kitchen.versioning import version_tuple_to_string
__version_info__ = ((0, 2, 1),)
__version__ = version_tuple_to_string(__version_info__)

Other programs that depend on a kitchen version between 0.2.1 and 0.3.0
can find whether the present version is okay with code like this:

from kitchen import __version_info__, __version__
if __version_info__ < ((0, 2, 1),) or __version_info__ >= ((0, 3, 0),):
 print 'kitchen is present but not at the right version.'
 print 'We need at least version 0.2.1 and less than 0.3.0'
 print 'Currently found: kitchen-%s' % __version__

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Python 2.4 Compatibiity

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

Python 2.4 Compatibiity

Sets for python-2.3

In python-2.4, a builtin set [http://docs.python.org/library/stdtypes.html#set] type was added to python. This module
provides a function to emulate that on python-2.3 by using the sets [http://docs.python.org/library/sets.html#module-sets]
module.

	set()

	Create a set. If running on python 2.4+ this is the set [http://docs.python.org/library/stdtypes.html#set]
constructor. If using python-2.3, it’s sets.Set [http://docs.python.org/library/sets.html#sets.Set].

	frozenset()

	Create a frozenset. If running on python2.4+ this is the
frozenset [http://docs.python.org/library/stdtypes.html#frozenset] constructor. If using python-2.3, it’s
sets.ImmutableSet [http://docs.python.org/library/sets.html#sets.ImmutableSet].

Changed in version 0.2.0: API: kitchen.pycompat24 1.0.0
Added set and frozenset

	
kitchen.pycompat24.sets.add_builtin_set()

	If there’s no set builtin, us the sets [http://docs.python.org/library/sets.html#module-sets] module to make one

This function makes sure that a set [http://docs.python.org/library/stdtypes.html#set] and frozenset [http://docs.python.org/library/stdtypes.html#frozenset] type
are available in the __builtin__ [http://docs.python.org/library/__builtin__.html#module-__builtin__] namespace. Since the function
checks whether set [http://docs.python.org/library/stdtypes.html#set] and frozenset [http://docs.python.org/library/stdtypes.html#frozenset] are already present in
the __builtin__ [http://docs.python.org/library/__builtin__.html#module-__builtin__] namespace and refuses to overwrite those if found,
it’s safe to call this in multiple places and in scripts run under
python-2.4+, where a more efficient set implementation is already present
in the __builtin__ [http://docs.python.org/library/__builtin__.html#module-__builtin__] namespace.

However, since this function modifies __builtin__ [http://docs.python.org/library/__builtin__.html#module-__builtin__] there’s no need
to call it more than once so you likely want to do something like this
when your program loads:

myprogram/__init__.py:

from kitchen.pycompat24 import sets
builtinset.add_builtin_set()

You can then use set() and frozenset() anywhere in your code:

myprogram/compute.py:

def math_students(algebra_student_list, geometry_student_list):
 return set(algebra_student_list) union set(geometry_student_list)

Partial new style base64 interface

Implement the modern base64 interface.

Python-2.4 and above have a new API for the base64 module. This is a backport
of that module for use on python-2.3.

See also

	base64 [http://docs.python.org/library/base64.html#module-base64]

	for information about using the functions provided here.

	
kitchen.pycompat24.base64.b16decode(s, casefold=False)

	Decode a Base16 encoded string.

s is the string to decode. Optional casefold is a flag specifying whether
a lowercase alphabet is acceptable as input. For security purposes, the
default is False.

The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.

	
kitchen.pycompat24.base64.b16encode(s)

	Encode a string using Base16.

s is the string to encode. The encoded string is returned.

	
kitchen.pycompat24.base64.b32decode(s, casefold=False, map01=None)

	Decode a Base32 encoded string.

s is the string to decode. Optional casefold is a flag specifying whether
a lowercase alphabet is acceptable as input. For security purposes, the
default is False.

RFC 3548 allows for optional mapping of the digit 0 (zero) to the letter O
(oh), and for optional mapping of the digit 1 (one) to either the letter I
(eye) or letter L (el). The optional argument map01 when not None,
specifies which letter the digit 1 should be mapped to (when map01 is not
None, the digit 0 is always mapped to the letter O). For security
purposes the default is None, so that 0 and 1 are not allowed in the
input.

The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.

	
kitchen.pycompat24.base64.b32encode(s)

	Encode a string using Base32.

s is the string to encode. The encoded string is returned.

	
kitchen.pycompat24.base64.b64decode(s, altchars=None)

	Decode a Base64 encoded string.

s is the string to decode. Optional altchars must be a string of at least
length 2 (additional characters are ignored) which specifies the
alternative alphabet used instead of the ‘+’ and ‘/’ characters.

The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.

	
kitchen.pycompat24.base64.b64encode(s, altchars=None)

	Encode a string using Base64.

s is the string to encode. Optional altchars must be a string of at least
length 2 (additional characters are ignored) which specifies an
alternative alphabet for the ‘+’ and ‘/’ characters. This allows an
application to e.g. generate url or filesystem safe Base64 strings.

The encoded string is returned.

	
kitchen.pycompat24.base64.decode(input, output)

	Decode a file.

	
kitchen.pycompat24.base64.decodestring(s)

	Decode a string.

	
kitchen.pycompat24.base64.encode(input, output)

	Encode a file.

	
kitchen.pycompat24.base64.encodestring(s)

	Encode a string into multiple lines of base-64 data.

	
kitchen.pycompat24.base64.standard_b64decode(s)

	Decode a string encoded with the standard Base64 alphabet.

s is the string to decode. The decoded string is returned. A TypeError
is raised if the string is incorrectly padded or if there are non-alphabet
characters present in the string.

	
kitchen.pycompat24.base64.standard_b64encode(s)

	Encode a string using the standard Base64 alphabet.

s is the string to encode. The encoded string is returned.

	
kitchen.pycompat24.base64.urlsafe_b64decode(s)

	Decode a string encoded with the standard Base64 alphabet.

s is the string to decode. The decoded string is returned. A TypeError
is raised if the string is incorrectly padded or if there are non-alphabet
characters present in the string.

The alphabet uses ‘-‘ instead of ‘+’ and ‘_’ instead of ‘/’.

	
kitchen.pycompat24.base64.urlsafe_b64encode(s)

	Encode a string using a url-safe Base64 alphabet.

s is the string to encode. The encoded string is returned. The alphabet
uses ‘-‘ instead of ‘+’ and ‘_’ instead of ‘/’.

Subprocess

See also

	kitchen.pycompat27.subprocess

	Kitchen includes the python-2.7 version of subprocess which has a new
function, check_output(). When
you import pycompat24.subprocess you will be getting the
python-2.7 version of subprocess rather than the 2.4 version (where
subprocess first appeared). This choice was made so that we can
concentrate our efforts on keeping the single version of subprocess up
to date rather than working on a 2.4 version that very few people
would need specifically.

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Python 2.5 Compatibility

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

Python 2.5 Compatibility

The kitchen.pycompat25 module contains implementations of functionality
introduced in python-2.5.

defaultdict

This is a pure python implementation of defaultdict that is compatible with
the defaultdict class provided by python-2.5 and above.

See also

	collections.defaultdict [http://docs.python.org/library/collections.html#collections.defaultdict]

	for documentation on this module

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Python 2.7 Compatibility

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

Python 2.7 Compatibility

Subprocess from Python 2.7

The subprocess [http://docs.python.org/library/subprocess.html#module-subprocess] module included here is a direct import from
python-2.7’s python standard library [http://docs.python.org/library]. You can access it via:

>>> from kitchen.pycompat27 import subprocess

The motivation for including this module is that various API changing
improvements have been made to subprocess over time. The following is a list
of the known changes to subprocess [http://docs.python.org/library/subprocess.html#module-subprocess] with the python version they were
introduced in:

	New API Feature
	Ver

	subprocess.CalledProcessError [http://docs.python.org/library/subprocess.html#subprocess.CalledProcessError]
	2.5

	subprocess.check_call() [http://docs.python.org/library/subprocess.html#subprocess.check_call]
	2.5

	subprocess.check_output() [http://docs.python.org/library/subprocess.html#subprocess.check_output]
	2.7

	subprocess.Popen.send_signal() [http://docs.python.org/library/subprocess.html#subprocess.Popen.send_signal]
	2.6

	subprocess.Popen.terminate() [http://docs.python.org/library/subprocess.html#subprocess.Popen.terminate]
	2.6

	subprocess.Popen.kill() [http://docs.python.org/library/subprocess.html#subprocess.Popen.kill]
	2.6

See also

	The stdlib subprocess [http://docs.python.org/library/subprocess.html#module-subprocess] documenation

	For complete documentation on how to use subprocess

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Exceptions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

 	Kitchen API

Exceptions

Kitchen has a hierarchy of exceptions that should make it easy to catch many
errors emitted by kitchen itself.

Base kitchen exceptions

Exception classes for kitchen and the root of the exception hierarchy for
all kitchen modules.

	
exception kitchen.exceptions.KitchenError

	Base exception class for any error thrown directly by kitchen.

Kitchen.text exceptions

Exception classes thrown by kitchen’s text processing routines.

	
exception kitchen.text.exceptions.XmlEncodeError

	Exception thrown by error conditions when encoding an xml string.

	
exception kitchen.text.exceptions.ControlCharError

	Exception thrown when an ascii control character is encountered.

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 1.0.0 Porting Guide

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

1.0.0 Porting Guide

The 0.1 through 1.0.0 releases focused on bringing in functions from yum and
python-fedora. This porting guide tells how to port from those APIs to their
kitchen replacements.

python-fedora

	python-fedora
	kitchen replacement

	fedora.iterutils.isiterable()
	kitchen.iterutils.isiterable() [1]

	fedora.textutils.to_unicode()
	kitchen.text.converters.to_unicode()

	fedora.textutils.to_bytes()
	kitchen.text.converters.to_bytes()

	[1]	isiterable() has changed slightly in
kitchen. The include_string attribute has switched its default value
from True [http://docs.python.org/library/constants.html#True] to False [http://docs.python.org/library/constants.html#False]. So you need to change code like:

>>> # Old code
>>> isiterable('abcdef')
True
>>> # New code
>>> isiterable('abcdef', include_string=True)
True

yum

	yum
	kitchen replacement

	yum.i18n.dummy_wrapper()
	kitchen.i18n.DummyTranslations.ugettext() [2]

	yum.i18n.dummyP_wrapper()
	kitchen.i18n.DummyTanslations.ungettext() [2]

	yum.i18n.utf8_width()
	kitchen.text.display.textual_width()

	yum.i18n.utf8_width_chop()
	kitchen.text.display.textual_width_chop()
and kitchen.text.display.textual_width() [3] [5]

	yum.i18n.utf8_valid()
	kitchen.text.misc.byte_string_valid_encoding()

	yum.i18n.utf8_text_wrap()
	kitchen.text.display.wrap() [4]

	yum.i18n.utf8_text_fill()
	kitchen.text.display.fill() [4]

	yum.i18n.to_unicode()
	kitchen.text.converters.to_unicode() [6]

	yum.i18n.to_unicode_maybe()
	kitchen.text.converters.to_unicode() [6]

	yum.i18n.to_utf8()
	kitchen.text.converters.to_bytes() [6]

	yum.i18n.to_str()
	kitchen.text.converters.to_unicode()
or kitchen.text.converters.to_bytes() [7]

	yum.i18n.str_eq()
	kitchen.text.misc.str_eq()

	yum.misc.to_xml()
	kitchen.text.converters.unicode_to_xml()
or kitchen.text.converters.byte_string_to_xml() [8]

	yum.i18n._()
	See: Initializing Yum i18n

	yum.i18n.P_()
	See: Initializing Yum i18n

	yum.i18n.exception2msg()
	kitchen.text.converters.exception_to_unicode()
or kitchen.text.converter.exception_to_bytes() [9]

	[2]	(1, 2) These yum methods provided fallback support for gettext [http://docs.python.org/library/gettext.html#module-gettext]
functions in case either gaftonmode was set or gettext [http://docs.python.org/library/gettext.html#module-gettext] failed
to return an object. In kitchen, we can use the
kitchen.i18n.DummyTranslations object to fulfill that role.
Please see Initializing Yum i18n for more suggestions on how to do this.

	[3]	The yum version of these functions returned a byte str. The
kitchen version listed here returns a unicode string. If you
need a byte str simply call
kitchen.text.converters.to_bytes() on the result.

	[4]	(1, 2) The yum version of these functions would return either a byte
str or a unicode string depending on what the input
value was. The kitchen version always returns unicode strings.

	[5]	yum.i18n.utf8_width_chop() performed two functions. It
returned the piece of the message that fit in a specified width and the
width of that message. In kitchen, you need to call two functions, one
for each action:

>>> # Old way
>>> utf8_width_chop(msg, 5)
(5, 'く ku')
>>> # New way
>>> from kitchen.text.display import textual_width, textual_width_chop
>>> (textual_width(msg), textual_width_chop(msg, 5))
(5, u'く ku')

	[6]	(1, 2, 3) If the yum version of to_unicode() or
to_utf8() is given an object that is not a string, it
returns the object itself. kitchen.text.converters.to_unicode() and
kitchen.text.converters.to_bytes() default to returning the
simplerepr of the object instead. If you want the yum behaviour, set
the nonstring parameter to passthru:

>>> from kitchen.text.converters import to_unicode
>>> to_unicode(5)
u'5'
>>> to_unicode(5, nonstring='passthru')
5

	[7]	yum.i18n.to_str() could return either a byte str. or
a unicode string In kitchen you can get the same effect but you
get to choose whether you want a byte str or a unicode
string. Use to_bytes() for str
and to_unicode() for unicode.

	[8]	yum.misc.to_xml() was buggy as written. I think the intention
was for you to be able to pass a byte str or unicode
string in and get out a byte str that was valid to use in an xml
file. The two kitchen functions
byte_string_to_xml() and
unicode_to_xml() do that for each string
type.

	[9]	When porting yum.i18n.exception2msg() to use kitchen, you
should setup two wrapper functions to aid in your port. They’ll look like
this:

from kitchen.text.converters import EXCEPTION_CONVERTERS, \
 BYTE_EXCEPTION_CONVERTERS, exception_to_unicode, \
 exception_to_bytes
def exception2umsg(e):
 '''Return a unicode representation of an exception'''
 c = [lambda e: e.value]
 c.extend(EXCEPTION_CONVERTERS)
 return exception_to_unicode(e, converters=c)
def exception2bmsg(e):
 '''Return a utf8 encoded str representation of an exception'''
 c = [lambda e: e.value]
 c.extend(BYTE_EXCEPTION_CONVERTERS)
 return exception_to_bytes(e, converters=c)

The reason to define this wrapper is that many of the exceptions in yum
put the message in the value attribute of the Exception
instead of adding it to the args attribute. So the default
EXCEPTION_CONVERTERS don’t know where to
find the message. The wrapper tells kitchen to check the value
attribute for the message. The reason to define two wrappers may be less
obvious. yum.i18n.exception2msg() can return a unicode
string or a byte str depending on a combination of what
attributes are present on the Exception and what locale the
function is being run in. By contrast,
kitchen.text.converters.exception_to_unicode() only returns
unicode strings and
kitchen.text.converters.exception_to_bytes() only returns byte
str. This is much safer as it keeps code that can only handle
unicode or only handle byte str correctly from getting
the wrong type when an input changes but it means you need to examine the
calling code when porting from yum.i18n.exception2msg() and use the
appropriate wrapper.

Initializing Yum i18n

Previously, yum had several pieces of code to initialize i18n. From the
toplevel of yum/i18n.py:

try:.
 '''
 Setup the yum translation domain and make _() and P_() translation wrappers
 available.
 using ugettext to make sure translated strings are in Unicode.
 '''
 import gettext
 t = gettext.translation('yum', fallback=True)
 _ = t.ugettext
 P_ = t.ungettext
except:
 '''
 Something went wrong so we make a dummy _() wrapper there is just
 returning the same text
 '''
 _ = dummy_wrapper
 P_ = dummyP_wrapper

With kitchen, this can be changed to this:

from kitchen.i18n import easy_gettext_setup, DummyTranslations
try:
 , P = easy_gettext_setup('yum')
except:
 translations = DummyTranslations()
 _ = translations.ugettext
 P_ = translations.ungettext

Note

In Overcoming frustration: Correctly using unicode in python2, it is mentioned that for some
things (like exception messages), using the byte str oriented
functions is more appropriate. If this is desired, the setup portion is
only a second call to kitchen.i18n.easy_gettext_setup():

b_, bP_ = easy_gettext_setup('yum', use_unicode=False)

The second place where i18n is setup is in yum.YumBase._getConfig() in
yum/__init_.py if gaftonmode is in effect:

if startupconf.gaftonmode:
 global _
 _ = yum.i18n.dummy_wrapper

This can be changed to:

if startupconf.gaftonmode:
 global _
 _ = DummyTranslations().ugettext()

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Conventions for contributing to kitchen

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	kitchen 1.2.0a1 documentation

Conventions for contributing to kitchen

Style

	Strive to be PEP 8 [http://www.python.org/dev/peps/pep-0008] compliant

	Run :command:`pylint ` over the code and try to resolve most of its nitpicking

Python 2.3 compatibility

At the moment, we’re supporting python-2.3 and above. Understand that there’s
a lot of python features that we cannot use because of this.

Sometimes modules in the python standard library [http://docs.python.org/library] can be added to kitchen so that they’re
available. When we do that we need to be careful of several things:

	Keep the module in sync with the version in the python-2.x trunk. Use
maintainers/sync-copied-files.py for this.

	Sync the unittests as well as the module.

	Be aware that not all modules are written to remain compatible with
Python-2.3 and might use python language features that were not present
then (generator expressions, relative imports, decorators, with, try: with
both except: and finally:, etc) These are not good candidates for
importing into kitchen as they require more work to keep synced.

Unittests

	At least smoketest your code (make sure a function will return expected
values for one set of inputs).

	Note that even 100% coverage is not a guarantee of working code! Good tests
will realize that you need to also give multiple inputs that test the code
paths of called functions that are outside of your code. Example:

def to_unicode(msg, encoding='utf8', errors='replace'):
 return unicode(msg, encoding, errors)

Smoketest only. This will give 100% coverage for your code (it
tests all of the code inside of to_unicode) but it leaves a lot of
room for errors as it doesn't test all combinations of arguments
that are then passed to the unicode() function.

tools.ok_(to_unicode('abc') == u'abc')

Better -- tests now cover non-ascii characters and that error conditions
occur properly. There's a lot of other permutations that can be
added along these same lines.
tools.ok_(to_unicode(u'café', 'utf8', 'replace'))
tools.assert_raises(UnicodeError, to_unicode, [u'cafè ñunru'.encode('latin1')])

	We’re using nose for unittesting. Rather than depend on unittest2
functionality, use the functions that nose provides.

	Remember to maintain python-2.3 compatibility even in unittests.

Docstrings and documentation

We use sphinx to build our documentation. We use the sphinx autodoc extension
to pull docstrings out of the modules for API documentation. This means that
docstrings for subpackages and modules should follow a certain pattern. The
general structure is:

	Introductory material about a module in the module’s top level docstring.
	Introductory material should begin with a level two title: an overbar and
underbar of ‘-‘.

	docstrings for every function.
	The first line is a short summary of what the function does

	This is followed by a blank line

	The next lines are a field list
<http://sphinx.pocoo.org/markup/desc.html#info-field-lists>_ giving
information about the function’s signature. We use the keywords:
arg, kwarg, raises, returns, and sometimes rtype. Use
these to describe all arguments, key word arguments, exceptions raised,
and return values using these.
	Parameters that are kwarg should specify what their default
behaviour is.

Kitchen versioning

Currently the kitchen library is in early stages of development. While we’re
in this state, the main kitchen library uses the following pattern for version
information:

	
	Versions look like this::

	__version_info__ = ((0, 1, 2),)
__version__ = ‘0.1.2’

	The Major version number remains at 0 until we decide to make the first 1.0
release of kitchen. At that point, we’re declaring that we have some
confidence that we won’t need to break backwards compatibility for a while.

	The Minor version increments for any backwards incompatible API changes.
When this is updated, we reset micro to zero.

	The Micro version increments for any other changes (backwards compatible API
changes, pure bugfixes, etc).

Note

Versioning is only updated for releases that generate sdists and new
uploads to the download directory. Usually we update the version
information for the library just before release. By contrast, we update
kitchen Versioning when an API change is made. When in
doubt, look at the version information in the last release.

I18N

All strings that are used as feedback for users need to be translated.
kitchen sets up several functions for this. _() is used for
marking things that are shown to users via print, GUIs, or other “standard”
methods. Strings for exceptions are marked with b_(). This function
returns a byte str which is needed for use with exceptions:

from kitchen import _, b_

def print_message(msg, username):
 print _('%(user)s, your message of the day is: %(message)s') % {
 'message': msg, 'user': username}

 raise Exception b_('Test message')

This serves several purposes:

	It marks the strings to be extracted by an xgettext-like program.

	_() is a function that will substitute available translations at
runtime.

Note

By using the %()s with dict style of string formatting, we make this
string friendly to translators that may need to reorder the variables when
they’re translating the string.

paver <http://www.blueskyonmars.com/projects/paver/>_ and babel
<http://babel.edgewall.org/>_ are used to extract the strings.

API updates

Kitchen strives to have a long deprecation cycle so that people have time to
switch away from any APIs that we decide to discard. Discarded APIs should
raise a DeprecationWarning and clearly state in the warning message and
the docstring how to convert old code to use the new interface. An example of
deprecating a function:

import warnings

from kitchen import _
from kitchen.text.converters import to_bytes, to_unicode
from kitchen.text.new_module import new_function

def old_function(param):
 '''**Deprecated**

 This function is deprecated. Use
 :func:`kitchen.text.new_module.new_function` instead. If you want
 unicode strngs as output, switch to::

 >>> from kitchen.text.new_module import new_function
 >>> output = new_function(param)

 If you want byte strings, use::

 >>> from kitchen.text.new_module import new_function
 >>> from kitchen.text.converters import to_bytes
 >>> output = to_bytes(new_function(param))
 '''
 warnings.warn(_('kitchen.text.old_function is deprecated. Use'
 ' kitchen.text.new_module.new_function instead'),
 DeprecationWarning, stacklevel=2)

 as_unicode = isinstance(param, unicode)
 message = new_function(to_unicode(param))
 if not as_unicode:
 message = to_bytes(message)
 return message

If a particular API change is very intrusive, it may be better to create a new
version of the subpackage and ship both the old version and the new version.

NEWS file

Update the NEWS file when you make a change that will be visible to
the users. This is not a ChangeLog file so we don’t need to list absolutely
everything but it should give the user an idea of how this version differs
from prior versions. API changes should be listed here explicitly. bugfixes
can be more general:

0.2.0

* Relicense to LGPLv2+
* Add kitchen.text.format module with the following functions:
 textual_width, textual_width_chop.
* Rename the kitchen.text.utils module to kitchen.text.misc. use of the
 old names is deprecated but still available.
* bugfixes applied to kitchen.pycompat24.defaultdict that fixes some
 tracebacks

Kitchen subpackages

Kitchen itself is a namespace. The kitchen sdist (tarball) provides certain
useful subpackages.

See also

	Kitchen addon packages

	For information about subpackages not distributed in the kitchen sdist
that install into the kitchen namespace.

Versioning

Each subpackage should have its own version information which is independent
of the other kitchen subpackages and the main kitchen library version. This is
used so that code that depends on kitchen APIs can check the version
information. The standard way to do this is to put something like this in the
subpackage’s __init__.py:

from kitchen.versioning import version_tuple_to_string

__version_info__ = ((1, 0, 0),)
__version__ = version_tuple_to_string(__version_info__)

__version_info__ is documented in kitchen.versioning. The
values of the first tuple should describe API changes to the module. There
are at least three numbers present in the tuple: (Major, minor, micro). The
major version number is for backwards incompatible changes (For
instance, removing a function, or adding a new mandatory argument to
a function). Whenever one of these occurs, you should increment the major
number and reset minor and micro to zero. The second number is the minor
version. Anytime new but backwards compatible changes are introduced this
number should be incremented and the micro version number reset to zero. The
micro version should be incremented when a change is made that does not change
the API at all. This is a common case for bugfixes, for instance.

Version information beyond the first three parts of the first tuple may be
useful for versioning but semantically have similar meaning to the micro
version.

Note

We update the __version_info__ tuple when the API is updated.
This way there’s less chance of forgetting to update the API version when
a new release is made. However, we try to only increment the version
numbers a single step for any release. So if kitchen-0.1.0 has
kitchen.text.__version__ == ‘1.0.1’, kitchen-0.1.1 should have
kitchen.text.__version__ == ‘1.0.2’ or ‘1.1.0’ or ‘2.0.0’.

Criteria for subpackages in kitchen

Supackages within kitchen should meet these criteria:

	Generally useful or needed for other pieces of kitchen.

	No mandatory requirements outside of the python standard library [http://docs.python.org/library].

	Optional requirements from outside the python standard library [http://docs.python.org/library] are allowed. Things with
mandatory requirements are better placed in kitchen addon packages

	Somewhat API stable – this is not a hard requirement. We can change the
kitchen api. However, it is better not to as people may come to depend on
it.

See also

API Updates

Kitchen addon packages

Addon packages are very similar to subpackages integrated into the kitchen
sdist. This section just lists some of the differences to watch out for.

setup.py

Your setup.py should contain entries like this:

It's suggested to use a dotted name like this so the package is easily
findable on pypi:
setup(name='kitchen.config',
 # Include kitchen in the keywords, again, for searching on pypi
 keywords=['kitchen', 'configuration'],
 # This package lives in the directory kitchen/config
 packages=['kitchen.config'],
 # [...]
)

Package directory layout

Create a kitchen directory in the toplevel. Place the addon
subpackage in there. For example:

./ <== toplevel with README, setup.py, NEWS, etc
kitchen/
kitchen/__init__.py
kitchen/config/ <== subpackage directory
kitchen/config/__init__.py

Fake kitchen module

The :file::__init__.py in the kitchen directory is special. It
won’t be installed. It just needs to pull in the kitchen from the system so
that you are able to test your module. You should be able to use this
boilerplate:

Fake module. This is not installed, It's just made to import the real
kitchen modules for testing this module
import pkgutil

Extend the __path__ with everything in the real kitchen module
__path__ = pkgutil.extend_path(__path__, __name__)

Note

kitchen needs to be findable by python for this to work. Installed
in the site-packages directory or adding it to the
PYTHONPATH [http://docs.python.org/using/cmdline.html#envvar-PYTHONPATH] will work.

Your unittests should now be able to find both your submodule and the main
kitchen module.

Versioning

It is recommended that addon packages version similarly to
Versioning. The __version_info__ and
__version__ strings can be changed independently of the version
exposed by setup.py so that you have both an API version
(__version_info__) and release version that’s easier for people to
parse. However, you aren’t required to do this and you could follow
a different methodology if you want (for instance, Kitchen versioning)

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Glossary

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	kitchen 1.2.0a1 documentation

Glossary

	“Everything but the kitchen sink”

	An English idiom meaning to include nearly everything that you can
think of.

	API version

	Version that is meant for computer consumption. This version is
parsable and comparable by computers. It contains information about
a library’s API so that computer software can decide whether it works
with the software.

	ASCII

	A character encoding that maps numbers to characters essential to
American English. It maps 128 characters using 7bits.

See also

http://en.wikipedia.org/wiki/ASCII

	ASCII compatible

	An encoding in which the particular byte that maps to a character in
the ASCII character set is only used to map to that character.
This excludes EBDIC based encodings and many multi-byte fixed and
variable width encodings since they reuse the bytes that make up the
ASCII encoding for other purposes. UTF-8 is notable
as a variable width encoding that is ASCII compatible.

See also

	http://en.wikipedia.org/wiki/Variable-width_encoding

	For another explanation of various ways bytes are mapped to
characters in a possibly incompatible manner.

	code points

	code point

	code point

	A number that maps to a particular abstract character. Code points
make it so that we have a number pointing to a character without
worrying about implementation details of how those numbers are stored
for the computer to read. Encodings define how the code points map to
particular sequences of bytes on disk and in memory.

	control characters

	control character

	control character

	The set of characters in unicode that are used, not to display glyphs
on the screen, but to tell the display in program to do something.

See also

http://en.wikipedia.org/wiki/Control_character

	grapheme

	characters or pieces of characters that you might write on a page to
make words, sentences, or other pieces of text.

See also

http://en.wikipedia.org/wiki/Grapheme

	I18N

	I18N is an abbreviation for internationalization. It’s often used to
signify the need to translate words, number and date formats, and
other pieces of data in a computer program so that it will work well
for people who speak another language than yourself.

	message catalogs

	message catalog

	message catalog

	Message catalogs contain translations for user-visible strings that
are present in your code. Normally, you need to mark the strings to
be translated by wrapping them in one of several gettext [http://docs.python.org/library/gettext.html#module-gettext]
functions. The function serves two purposes:

	It allows automated tools to find which strings are supposed to be
extracted for translation.

	The functions perform the translation when the program is running.

See also

babel’s documentation [http://babel.edgewall.org/wiki/Documentation/messages.html]

for one method of extracting message catalogs from source
code.

	Murphy’s Law

	“Anything that can go wrong, will go wrong.”

See also

http://en.wikipedia.org/wiki/Murphy%27s_Law

	release version

	Version that is meant for human consumption. This version is easy for
a human to look at to decide how a particular version relates to other
versions of the software.

	textual width

	The amount of horizontal space a character takes up on a monospaced
screen. The units are number of character cells or columns that it
takes the place of.

	UTF-8

	A character encoding that maps all unicode code points to a sequence
of bytes. It is compatible with ASCII. It uses a variable
number of bytes to encode all of unicode. ASCII characters take one
byte. Characters from other parts of unicode take two to four bytes.
It is widespread as an encoding on the internet and in Linux.

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	kitchen 1.2.0a1 documentation

 Python Module Index

 k

 			

 		
 k	

 	[image: -]
 	
 kitchen	

 	
 	
 kitchen.collections.strictdict	

 	
 	
 kitchen.exceptions	

 	
 	
 kitchen.i18n	

 	
 	
 kitchen.iterutils	

 	
 	
 kitchen.pycompat24.base64	

 	
 	
 kitchen.pycompat24.sets	

 	
 	
 kitchen.pycompat25	

 	
 	
 kitchen.pycompat25.collections._defaultdict	

 	
 	
 kitchen.pycompat27.subprocess	

 	
 	
 kitchen.text.converters	

 	
 	
 kitchen.text.display	

 	
 	
 kitchen.text.exceptions	

 	
 	
 kitchen.text.misc	

 	
 	
 kitchen.text.utf8	Deprecated:

 	
 	
 kitchen.versioning	

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

 Index

 Navigation

 	
 index

 	
 modules |

 	kitchen 1.2.0a1 documentation

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X

Symbols

 	

 	"Everything but the kitchen sink"

_

 	

 	_COMBINING (in module kitchen.text.display)

 	_generate_combining_table() (in module kitchen.text.display)

 	_interval_bisearch() (in module kitchen.text.display)

 	

 	_print_combining_table() (in module kitchen.text.display)

 	_textual_width_le() (in module kitchen.text.display)

 	_ucp_width() (in module kitchen.text.display)

A

 	

 	add_builtin_set() (in module kitchen.pycompat24.sets)

 	API version

 	

 	ASCII

 	ASCII compatible

B

 	

 	b16decode() (in module kitchen.pycompat24.base64)

 	b16encode() (in module kitchen.pycompat24.base64)

 	b32decode() (in module kitchen.pycompat24.base64)

 	b32encode() (in module kitchen.pycompat24.base64)

 	b64decode() (in module kitchen.pycompat24.base64)

 	b64encode() (in module kitchen.pycompat24.base64)

 	

 	BYTE_EXCEPTION_CONVERTERS (in module kitchen.text.converters)

 	byte_string_textual_width_fill() (in module kitchen.text.display)

 	byte_string_to_xml() (in module kitchen.text.converters)

 	byte_string_valid_encoding() (in module kitchen.text.misc)

 	byte_string_valid_xml() (in module kitchen.text.misc)

 	bytes_to_xml() (in module kitchen.text.converters)

C

 	

 	code point

 	code points

 	control character

 	

 	control characters

 	ControlCharError

D

 	

 	decode() (in module kitchen.pycompat24.base64)

 	decodestring() (in module kitchen.pycompat24.base64)

 	

 	DummyTranslations (class in kitchen.i18n)

E

 	

 	easy_gettext_setup() (in module kitchen.i18n)

 	encode() (in module kitchen.pycompat24.base64)

 	encodestring() (in module kitchen.pycompat24.base64)

 	
 environment variable

 	

 	LC_ALL, [1], [2], [3]

 	LC_CTYPE

 	PYTHONPATH

 	

 	EXCEPTION_CONVERTERS (in module kitchen.text.converters)

 	exception_to_bytes() (in module kitchen.text.converters)

 	exception_to_unicode() (in module kitchen.text.converters)

F

 	

 	fill() (in module kitchen.text.display)

G

 	

 	get_translation_object() (in module kitchen.i18n)

 	getwriter() (in module kitchen.text.converters)

 	grapheme

 	

 	guess_encoding() (in module kitchen.text.misc)

 	guess_encoding_to_xml() (in module kitchen.text.converters)

H

 	

 	html_entities_unescape() (in module kitchen.text.misc)

I

 	

 	I18N

 	input_charset (kitchen.i18n.DummyTranslations attribute)

 	

 	(kitchen.i18n.NewGNUTranslations attribute)

 	isbasestring() (in module kitchen.text.misc)

 	isbytestring() (in module kitchen.text.misc)

 	

 	isiterable() (in module kitchen.iterutils)

 	isunicodestring() (in module kitchen.text.misc)

 	iterate() (in module kitchen.iterutils)

K

 	

 	kitchen.collections.strictdict (module)

 	kitchen.exceptions (module)

 	kitchen.i18n (module)

 	kitchen.iterutils (module)

 	kitchen.pycompat24.base64 (module)

 	kitchen.pycompat24.sets (module)

 	kitchen.pycompat25 (module)

 	kitchen.pycompat25.collections._defaultdict (module)

 	

 	kitchen.pycompat27.subprocess (module)

 	kitchen.text.converters (module)

 	kitchen.text.display (module)

 	kitchen.text.exceptions (module)

 	kitchen.text.misc (module)

 	kitchen.text.utf8 (module)

 	kitchen.versioning (module)

 	KitchenError

L

 	

 	LC_ALL, [1], [2], [3]

 	

 	LC_CTYPE

M

 	

 	message catalog

 	message catalogs

 	

 	Murphy's Law

N

 	

 	NewGNUTranslations (class in kitchen.i18n)

P

 	

 	process_control_chars() (in module kitchen.text.misc)

 	
 Python Enhancement Proposals

 	

 	PEP 383

 	PEP 386, [1], [2], [3], [4], [5], [6], [7], [8]

 	PEP 8

 	

 	PYTHONPATH

R

 	

 	release version

S

 	

 	set_output_charset() (kitchen.i18n.DummyTranslations method)

 	standard_b64decode() (in module kitchen.pycompat24.base64)

 	standard_b64encode() (in module kitchen.pycompat24.base64)

 	

 	str_eq() (in module kitchen.text.misc)

 	StrictDict (class in kitchen.collections.strictdict)

T

 	

 	textual width

 	textual_width() (in module kitchen.text.display)

 	textual_width_chop() (in module kitchen.text.display)

 	textual_width_fill() (in module kitchen.text.display)

 	to_bytes() (in module kitchen.text.converters)

 	

 	to_str() (in module kitchen.text.converters)

 	to_unicode() (in module kitchen.text.converters)

 	to_utf8() (in module kitchen.text.converters)

 	to_xml() (in module kitchen.text.converters)

U

 	

 	unicode_to_xml() (in module kitchen.text.converters)

 	urlsafe_b64decode() (in module kitchen.pycompat24.base64)

 	urlsafe_b64encode() (in module kitchen.pycompat24.base64)

 	UTF-8

 	utf8_text_fill() (in module kitchen.text.utf8)

 	

 	utf8_text_wrap() (in module kitchen.text.utf8)

 	utf8_valid() (in module kitchen.text.utf8)

 	utf8_width() (in module kitchen.text.utf8)

 	utf8_width_chop() (in module kitchen.text.utf8)

 	utf8_width_fill() (in module kitchen.text.utf8)

V

 	

 	version_tuple_to_string() (in module kitchen.versioning)

W

 	

 	wrap() (in module kitchen.text.display)

X

 	

 	xml_to_byte_string() (in module kitchen.text.converters)

 	xml_to_bytes() (in module kitchen.text.converters)

 	

 	xml_to_unicode() (in module kitchen.text.converters)

 	XmlEncodeError

 Copyright 2012 Red Hat, Inc. and others.
 Created using Sphinx 1.2.2.

_static/plus.png

_static/ajax-loader.gif

_static/down.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		kitchen 1.2.0a1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

